www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Winkel von 2 Einheitsvektoren
Winkel von 2 Einheitsvektoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel von 2 Einheitsvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Sa 18.07.2009
Autor: poperina

Aufgabe
Man bestimme bezüglich der Bilinearform die Länge der Einheitsvektoren [mm] e_{1}, e_{2}, e_{3} [/mm] sowie die von ihnen eingeschlossenen Winkel.

A= [mm] \pmat{ 9 & 0 & 3 \\ 0 & 1 & -1 \\ 3 & -1 & 4} [/mm]

Hallo,

schreibe am Montag Mathe- Prüfung und ich kommen bei der Winkelberechnung von den Einheitsvektoren nicht weiter.

Die Lösung der Aufgabe ist bekannt, wie man darauf kommt ist mir aber schleierhaft.


cos vom Winkel [mm] (e_{1},e_{3})= sigma(e_{1}, e_{3}) [/mm] / [mm] \parallel e_{1} \parallel [/mm] * [mm] \parallel e_{3} \parallel [/mm]

Die Lösung lautet laut Vorgabe: 3 / 3*2 = 1/2


Wie kommt man auf die 3 im Zähler?!?

Danke!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Winkel von 2 Einheitsvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Sa 18.07.2009
Autor: MathePower

Hallo poperina,

> Man bestimme bezüglich der Bilinearform die Länge der
> Einheitsvektoren [mm]e_{1}, e_{2}, e_{3}[/mm] sowie die von ihnen
> eingeschlossenen Winkel.
>
> A= [mm]\pmat{ 9 & 0 & 3 \\ 0 & 1 & -1 \\ 3 & -1 & 4}[/mm]
>  Hallo,
>
> schreibe am Montag Mathe- Prüfung und ich kommen bei der
> Winkelberechnung von den Einheitsvektoren nicht weiter.
>
> Die Lösung der Aufgabe ist bekannt, wie man darauf kommt
> ist mir aber schleierhaft.
>
>
> cos vom Winkel [mm](e_{1},e_{3})= sigma(e_{1}, e_{3})[/mm] /
> [mm]\parallel e_{1} \parallel[/mm] * [mm]\parallel e_{3} \parallel[/mm]
>
> Die Lösung lautet laut Vorgabe: 3 / 3*2 = 1/2
>  
>
> Wie kommt man auf die 3 im Zähler?!?


Nun, hier ist das Skalarprodukt wie folgt definiert:

[mm]\sigma(u, v):=u^{T}*A*v[/mm]


Hier also

[mm]\sigma\left(e_{1}, e_{1}\right)=e_{1}^{T}*A*e_{1}=\pmat{1 & 0 & 0 }* A * \pmat{1 \\ 0 \\ 0}=\vmat{\vmat{e_{1}}}^{2}[/mm]

[mm]\sigma\left(e_{1}, e_{3}\right)=e_{1}^{T}*A*e_{3}=\pmat{1 & 0 & 0 }* A * \pmat{0 \\ 0 \\ 1}[/mm]

[mm]\sigma\left(e_{3}, e_{3}\right)=e_{3}^{T}*A*e_{3}=\pmat{0 & 0 & 1 }* A * \pmat{0 \\ 0 \\ 1}=\vmat{\vmat{e_{3}}}^{2}[/mm]


>  
> Danke!
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruß
MathePower

Bezug
                
Bezug
Winkel von 2 Einheitsvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Sa 18.07.2009
Autor: poperina

Vielen lieben Dank!

Muss man also immer, wenn Einheitsverktoren im Spiel sind, die Formel $ [mm] \sigma(u, v):=u^{T}\cdot{}A\cdot{}v [/mm] $ nutzen?

Denn sonst reicht es ja, bei einem Vektor v die Länge durch [mm] \wurzel{ $ \sigma(v)}= \wurzel{\vektor{x \\ y} * \vektor{x \\ y}} [/mm] auszurechnen... ?!

Danke!

Bezug
                        
Bezug
Winkel von 2 Einheitsvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Sa 18.07.2009
Autor: MathePower

Hallo poperina,

> Vielen lieben Dank!
>  
> Muss man also immer, wenn Einheitsverktoren im Spiel sind,
> die Formel [mm]\sigma(u, v):=u^{T}\cdot{}A\cdot{}v[/mm] nutzen?


Formal ist so das Skalarprodukt von zwei Vektoren u und v definiert.


>
> Denn sonst reicht es ja, bei einem Vektor v die Länge
> durch [mm]\wurzel{ $ \sigma(v)}= \wurzel{\vektor{x \\ y} * \vektor{x \\ y}}[/mm]
> auszurechnen... ?!


Ja, das ist richtig.


>  
> Danke!


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de