www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Winkel von \vec{c} ?
Winkel von \vec{c} ? < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel von \vec{c} ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Fr 11.04.2014
Autor: Teryosas

Aufgabe
[mm] |\vec{a}|= [/mm] 5m    und weißt direkt Richtung Osten
[mm] |\vec{b}|= [/mm] 4m    und besitzt Winkel von 35° in Richtung westlich von Norden

[mm] |\vec{c}| [/mm] = [mm] |\vec{a}| [/mm] + [mm] |\vec{b}| [/mm] = 9m
[mm] |\vec{d}| [/mm] = [mm] |\vec{a}| [/mm] - [mm] |\vec{b}| [/mm] = 1m

Hey,
Wie bekomme ich jeweils den Winkel von [mm] |\vec{c}| [/mm] und [mm] |\vec{d}| [/mm] raus?

        
Bezug
Winkel von \vec{c} ?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Fr 11.04.2014
Autor: Sax

Hi,

> [mm]|\vec{a}|=[/mm] 5m    und weißt direkt Richtung Osten
>  [mm]|\vec{b}|=[/mm] 4m    und besitzt Winkel von 35° in Richtung
> westlich von Norden
>  
> [mm]|\vec{c}|[/mm] = [mm]|\vec{a}|[/mm] + [mm]|\vec{b}|[/mm] = 9m
>  [mm]|\vec{d}|[/mm] = [mm]|\vec{a}|[/mm] - [mm]|\vec{b}|[/mm] = 1m

was du hier aufschreibst, ist formal zwar richtig, aber inhaltlich völlig leer.
Es gibt in deiner Vektor-Konstellation keinen sinnvollen Vektor [mm] \vec{c}, [/mm] der die Länge 9m hat.

Wir können wohl davon ausgehen, dass hier Vektoren addiert werden sollen, also [mm] \vec{c}=\vec{a}+\vec{b} [/mm] gelten soll. Graphisch kannst du diese Addition durchführen, indem du die Diagonale im Parallelogramm zeichnest, das die Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] als Seiten hat ( Skizze machen ! , muss nicht maßstabsgerecht sein.)
Dann siehst du, dass die Länge von [mm] \vec{c} [/mm] nicht 9 sein kann (weil nämlich [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] nicht richtungsparallel sind).

>  Hey,
>  Wie bekomme ich jeweils den Winkel von [mm]|\vec{c}|[/mm] und
> [mm]|\vec{d}|[/mm] raus?  

Ein Vektor hat keinen Winkel, und sein Betrag erst recht nicht.

Wenn du dir deine Skizze anschaust (ich nehme an, dass die inzwischen fertig geworden ist), dann erkennst du, dass du die Länge der Diagonalen in deinem Parallelogramm, also [mm]|\vec{c}|[/mm] mit Hilfe des Kosinussatzes ermitteln kannst und ebenso den Winkel, den dieser Vektor mit der "Nord"-Richtung einschließt.

Für den Vektor [mm] \vec{d} [/mm] gehst du ganz analog vor, der Vektor [mm] \vec{b} [/mm] ist durch [mm] -\vec{b} [/mm] zu ersetzen, d.h. gleiche Länge, entgegengesetzte Richtung.

Gruß Sax.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de