www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Winkel zw. EV & y-Achse
Winkel zw. EV & y-Achse < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel zw. EV & y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mo 16.12.2013
Autor: PxBx

Aufgabe
Berechnen Sie den Winkel zwischen dem Eigenvektor zum kleinsten Eigenwert der Matrix A = [mm] \pmat{ 2 & 3 & 3 \\ 2 & 1 & 0 \\ 0 & 0 & 0 } [/mm] und der y-Achse!

Hallo Leute,

habe hier als Eigenwerte -1 0 4 raus.
Die Eigenvektoren von -1 lauten demnach: -1 1 0

Mir fehlt leider jeglicher Ansatz wie ich jetzt weitermachen kann.
Gibt es da ein Formel nach der man diesen Winkel bestimmt?


        
Bezug
Winkel zw. EV & y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Mo 16.12.2013
Autor: schachuzipus

Hallo,

> Berechnen Sie den Winkel zwischen dem Eigenvektor zum
> kleinsten Eigenwert der Matrix A = [mm]\pmat{ 2 & 3 & 3 \\ 2 & 1 & 0 \\ 0 & 0 & 0 }[/mm]
> und der y-Achse!
> Hallo Leute,

>

> habe hier als Eigenwerte -1 0 4 raus.
> Die Eigenvektoren

Ein Eigenvektor zum Eigenwert -1 lautet ...

> von -1 lauten demnach:

> -1 1 0 [ok]

Schreiben kannst du das so: \vektor{-1\\1\\0}

Das sieht dann so aus: [mm]\vektor{-1\\1\\0}[/mm]

>

> Mir fehlt leider jeglicher Ansatz wie ich jetzt
> weitermachen kann.
> Gibt es da ein Formel nach der man diesen Winkel
> bestimmt?

Jo, Winkel [mm]\alpha[/mm] zwischen 2 Vektoren [mm]\vec a,\vec b[/mm]:

[mm]\cos(\alpha)=\frac{\vec a\cdot{}\vec b}{\left|\vec a\right|\cdot{}\left|\vec b\right|}[/mm]

Wobei im Zähler das Skalarprodukt gemeint ist ...


Gruß

schachuzipus

Bezug
                
Bezug
Winkel zw. EV & y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mo 16.12.2013
Autor: PxBx

Danke erstmal soweit,

aber was ist in meinem Fall [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] ?

Die Formel für den Winkel zwischen zwei Vektoren ist mir bekannt, nur wie stelle ich hier den Bezug zur y-Achse her?

Bezug
                        
Bezug
Winkel zw. EV & y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mo 16.12.2013
Autor: Diophant

Hallo,

> Danke erstmal soweit,

>

> aber was ist in meinem Fall [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] ?

Nun, ich würde die zwei Vektoren wählen, zwischen denen laut Aufgabenstellung der Winkel zu bestimmen ist. :-)

>

> Die Formel für den Winkel zwischen zwei Vektoren ist mir
> bekannt, nur wie stelle ich hier den Bezug zur y-Achse her?

Indem du den Einheitsvektor der y-Achse

[mm] \vec{e}_y=(0,1,0)^T [/mm]

verwendest...

Gruß, Diophant

Bezug
                                
Bezug
Winkel zw. EV & y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Di 17.12.2013
Autor: PxBx

Habe das jetzt mal versucht:

[mm] \vec{a} [/mm] = [mm] \vektor{-1 \\ 1 \\0} \vec{b} [/mm] = [mm] \vektor{0 \\ 1 \\0} [/mm]

Nach der Formel für den Winkel zwischen zwei Vektoren:

für das Skalarprodukt bekomme ich den Wert "1"

für den Nennen den Wert [mm] "\wurzel{2} \* [/mm] 1"

nach [mm] \alpha [/mm] umgestellt somit "45°"

Könnte mir bitte dazu noch jemand ein Feedback geben, ob ich hier alles richtig gemacht habe?

Danke!


Bezug
                                        
Bezug
Winkel zw. EV & y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Di 17.12.2013
Autor: fred97


> Habe das jetzt mal versucht:
>  
> [mm]\vec{a}[/mm] = [mm]\vektor{-1 \\ 1 \\0} \vec{b}[/mm] = [mm]\vektor{0 \\ 1 \\0}[/mm]
>  
> Nach der Formel für den Winkel zwischen zwei Vektoren:
>  
> für das Skalarprodukt bekomme ich den Wert "1"
>  
> für den Nennen den Wert [mm]"\wurzel{2} \*[/mm] 1"
>  
> nach [mm]\alpha[/mm] umgestellt somit "45°"
>  
> Könnte mir bitte dazu noch jemand ein Feedback geben, ob
> ich hier alles richtig gemacht habe?

Es stimmt alles

FRED

>  
> Danke!
>  


Bezug
                                                
Bezug
Winkel zw. EV & y-Achse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Di 17.12.2013
Autor: PxBx

Vielen Dank für eure tolle Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de