www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Winkel zwischen Raumdiagonalen
Winkel zwischen Raumdiagonalen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel zwischen Raumdiagonalen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Mo 27.05.2013
Autor: humalog

Aufgabe
Zeigen Sie, dass die Vektoren a (2 -14 5), b (11 -2 -10) und c (-10 -5 -10) einen Würfel aufspannen. Unter welchem Winkel schneiden sich die Raumdiagonalen des Würfels?

Die erste Frage habe ich beantwortet indem ich die Beträge miteinander verglichen habe. Die Beträge, also Seiten, haben alle die gleiche Länge, deswegen handelt es sich um einen Würfel.

Bei der Frage des Winkels komme ich nicht weiter. Für die Lösung benötige ich doch die Vektoren der Raumdiagonalen,die ich mithilfe des Skalarprodukts rausbekomme. Ich habe das Skalarprodukt aus c-a * b-a gebildet. Ist dieser Lösungsansatz richtig, um auf den gesuchten Winkel zu kommen?

MFG

        
Bezug
Winkel zwischen Raumdiagonalen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mo 27.05.2013
Autor: reverend

Hallo humalog,

nee, das reicht so noch nicht.

> Zeigen Sie, dass die Vektoren a (2 -14 5), b (11 -2 -10)
> und c (-10 -5 -10) einen Würfel aufspannen. Unter welchem
> Winkel schneiden sich die Raumdiagonalen des Würfels?

>

> Die erste Frage habe ich beantwortet indem ich die
> Beträge miteinander verglichen habe. Die Beträge, also
> Seiten, haben alle die gleiche Länge, deswegen handelt es
> sich um einen Würfel.

Hier musst Du noch überprüfen, ob die Kanten auch senkrecht aufeinander stehen. Sonst könnte es sich ja  auch um einen Spat (Parallelepiped) mit gleichen Kantenlängen handeln.

> Bei der Frage des Winkels komme ich nicht weiter. Für die
> Lösung benötige ich doch die Vektoren der
> Raumdiagonalen,die ich mithilfe des Skalarprodukts
> rausbekomme. Ich habe das Skalarprodukt aus c-a * b-a
> gebildet. Ist dieser Lösungsansatz richtig, um auf den
> gesuchten Winkel zu kommen?

Nein. Das sind doch zwei Vektoren, die in Kantenrichtung verlaufen. Bestimme erst einmal die acht Eckpunkte des Würfels und überlege Dir zwei verschiedene Paare, die einander (raum)diagonal gegenüberliegen.

Als Kontrollergebnis: der gesuchte Winkel beträgt ca. 70,52°.

Grüße
reverend

Bezug
                
Bezug
Winkel zwischen Raumdiagonalen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Di 28.05.2013
Autor: humalog

Hallo reverend,

die Orthogonalität habe ich überprüft indem das Skalarprodukt 0 ergibt.

Wenn ich jetzt gegenüberliegende Eckpunkte bestimme, kann ich dann beliebige wählen, zum Beispiel P1(0,0,0) P2(1,1,1) oder muss ich dann von denen ausgehen, die mir vorgegeben sind?

Bezug
                        
Bezug
Winkel zwischen Raumdiagonalen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Di 28.05.2013
Autor: angela.h.b.


> Hallo reverend,

>

> die Orthogonalität habe ich überprüft indem das
> Skalarprodukt 0 ergibt.

>

> Wenn ich jetzt gegenüberliegende Eckpunkte bestimme, kann
> ich dann beliebige wählen, zum Beispiel P1(0,0,0)
> P2(1,1,1) oder muss ich dann von denen ausgehen, die mir
> vorgegeben sind?

Hallo,

meine spontane Antwort wäre gewesen: NATÜRLICH von denen des Dir vorliegenden Würfels!

Aber Du hast schon recht: wenn es wirklich nur um die Winkel geht, und man aus irgendwelchen Gründen bereits weiß, daß die eh in jedem Würfel gleich sind, kann man jeden x-beliebigen Würfel nehmen.

Aber spätestens, wenn Du den Schnittpunkt sagen sollst, oder irgendwelche Winkel die mit den Koordinatenebenen oder -achsen gebildet werden, brauchst Du Deinen speziellen Würfel.

Ich würde auch rein zu Übungszwecken zumindest zur Kontrolle mal Deinen Würfel nehmen. Ist ja kein Fehler, wenn man in der Lage ist, die Eckpunkte hinzuschreiben, oder?

LG Angela
 

Bezug
                                
Bezug
Winkel zwischen Raumdiagonalen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Di 28.05.2013
Autor: humalog

Wie bekomme ich denn von meinem gegebenen Punkt den gegenüberliegenden Punkt heraus? Ich versuche auf die Lösung zu kommen, aber ich habe keinen Ansatz...

Bezug
                                        
Bezug
Winkel zwischen Raumdiagonalen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Di 28.05.2013
Autor: chrisno

Du hast keine Punkte vorgegeben und Du brauchst auch keine. Wenn die drei Vektoren [mm] $\vec{a}$, $\vec{b}$ [/mm] und [mm] $\vec{c}$ [/mm] heißen, dann ist [mm] $\vec{a} [/mm] + [mm] \vec{b}+ \vec{c}$ [/mm] ein Vektor in Richtung der  Raumdiagonalen. Einen anderen bekommst Du zum Beispiel mit [mm] $-\vec{a} [/mm] - [mm] \vec{b}+ \vec{c}$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de