www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Winkelhalbierende im Dreieck
Winkelhalbierende im Dreieck < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkelhalbierende im Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Mo 08.06.2009
Autor: Rhythmuskaefer

Aufgabe
Man beweise: Die Winkelhalbierenden eines Dreieckswinkels und ihres Nebenwinkels teilen die gegenüberliegende Seite innen und außen im selben Verhältnis.

Hallo zusammen,

habe letzte Woche meine korrigierte Aufgabe zurück bekommen. Der letzte Teil meiner Lösung sei unvollständig, sagte man mir. Habe aber keine Ahnung, wie ich auf die Lösung kommen soll:

Zur inneren Teilung ist bei mir komplett alles richtig, deswegen schreibe ich nur meinen Ansatz zur äußeren Teilung auf:

[Dateianhang nicht öffentlich]

Sei ABC das gegebene Dreieck. Konstruiere den Punkt A'' durch Abtragen der Länge |AC| auf der Seite BC, ausgehend vom Punkt C. Verbindet man nun A und A'', so entsteht ein gleichschenkliges Dreieck A''CA. Damit steht die Seite AA'' senkrecht zur Winkelhalbierenden von gamma, da A''CA gleichschenklig ist. Konstruiert man nun die Senkrechte zu der Winkelhalbierenden von gamma durch den Punkt C und schneidet diese mit der Verlängerung von AB, so entsteht der Punkt T'. Die Seiten AA'' und CT' sind also parallel und es liegt eine Strahlensatzfigur vor, aus der folgt:

BT'/AT' = BC/A''C = BC/AC.

Nun sagte man mir, ich müsse zeigen, dass

AT/TB = AC/CB.

Ich komme aber einfach nicht darauf, wie das geht. Kann mir jemand helfen? Habe auch schon überlegt, ob sich der Korrekteur verschrieben hat und statt T T'' meint. Das wäre ja dann eine ganz einfache Strahlensatzfigur.

Vielen Dank schonmal!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Winkelhalbierende im Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Mo 08.06.2009
Autor: statler

Mahlzeit!

> Nun sagte man mir, ich müsse zeigen, dass
>  
> AT/TB = AC/CB.

Genau, das mußt du auch noch zeigen.

> Ich komme aber einfach nicht darauf, wie das geht. Kann mir
> jemand helfen? Habe auch schon überlegt, ob sich der
> Korrekteur verschrieben hat und statt T T'' meint. Das wäre
> ja dann eine ganz einfache Strahlensatzfigur.

Wenn du durch A die Parallele zu CT ziehst und sie mit CB in S schneidest (oder andersrum CA  auf BC über C hinaus abträgst), kriegst du einen Strahlensatz mitdem Scheitel in B:
BT:TA = BC:CS = BC:CA

Gruß aus HH-Harburg
Dieter

>  
> Vielen Dank schonmal!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de