www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wkt: Schätzer trifft EW exakt
Wkt: Schätzer trifft EW exakt < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wkt: Schätzer trifft EW exakt: Hilfe bei Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:10 Di 03.07.2012
Autor: Dicen

Aufgabe
Ein Trainer will in Erfahrung bringen, wie lange es im Schnitt dauert, bis sein Stürmer ein
Tor schießt. Er hat hierzu alle seine 56 Einsätze auswerten lassen und kommt auf die Folge der
25 Zeitabstände der Tore (in Minuten): x1 , x2 , . . . , x25 . Für diese Daten erhält er

[mm] $\sum_{i=1}^{N} [/mm] xi = 2800.

Wir nehmen an, dass die tatsähliche durchschnittliche Dauer zwischen zwei Toren X näherungs-
weise normalverteilt ist mit unbekanntem Erwartungswert μ und bekannter Varianz $σ^2 = 100$.
Desweiteren nehmen wir an, dass die Zeitabstände zwischen Toren unabhängig sind.

(i) Schätzen Sie die tats ̈chliche durchschnittliche Dauer zwischen zwei Toren μ.

(ii) Wie groß ist die Wahrscheinlichkeit, mit dem Mittelwert X den wahren Wert μ exakt
zu treffen?

(iii) Bestimmen Sie ein Konfidenzintervall zum Niveau 0.95 für μ.



Hallo liebe Helfer,

Ich weiß ehrlichgesagt nicht wie ich diese Aufgabe angehen soll. Ich hoffe ihr könnt mir nen Tipp geben.

edit: Also, ich glaube ich hab die a) jetzt gelöst.
Zwar hab ich einfach den Erwartungswert der gemeinsamen Dichte der Zufallsvariablen x1 bis x25 errechnet und kam auf das arithmetische Mittel.
Das erscheint mir auch sinnvoll, allerdings weiß ich jetzt bei der b) nicht weiter.
Wäre froh über einen Tipp!


        
Bezug
Wkt: Schätzer trifft EW exakt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Mi 04.07.2012
Autor: luis52


>  allerdings weiß ich  jetzt bei der b) nicht weiter.


Moin, [mm] $\bar [/mm] X$ ist, wie du vielleicht weisst, normalverteilt und somit stetig verteilt. Wie gross ist demnach [mm] $P(\bar X=\mu)$? [/mm]

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de