www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Wo ist mein Fehler?
Wo ist mein Fehler? < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wo ist mein Fehler?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Mi 07.06.2006
Autor: rotespinne

Hallo!

Ich habe eben noch eine Ungleichung gelöst, und zwar folgende :

[mm] \wurzel{x^2-x-12} [/mm] < x

Ich habe zuerst die Nullstelle des Termes unter der Wurzel berechnet. da komme ich auf 4.

Wenn ich aber die Gleichung dann normal auflöse, dann erhalte ich:

zeurst habe ich das ganze quadriert, ergibt

[mm] x^2-x-12 [/mm] < [mm] x^2 x^2 [/mm] subtrahiert

-x-12 < o                                             12 addiert
-x < 12                                              mit (-1 ) multipliziert
x < -12

Aber das ist doch irgendwie ein Widerspruch, oder?

Also Lösungsmenge ist in den Lösungen das Intervall 4 bis unendlich angegeben, wobei 4 in dem Intevall liegt, unendlich nicht....


Verstehe nicht wie man darauf kommt?

PS: Sorry für die Flut an Fragen aber ich habe heute einen Mathetag eingelegt wo ich alles wiederhole und unklare Sachen klären mag :0)

        
Bezug
Wo ist mein Fehler?: Definitionsbereich beachten
Status: (Antwort) fertig Status 
Datum: 14:35 Mi 07.06.2006
Autor: Roadrunner

Hallo rotespinne!


Dein Lösungsweg mit Quadrieren usw. ist richtig! Aber nur bis zum letzten Schritt: Bei Multiplikation mit negativen Zahlen dreht sich das Ungleichheitszeichen um!

Allerdings musst Du hier auch noch die Probe machen, da das Quadrieren keine Äquivalenzumformung ist!


Zudem musst Du auch den Definitionsbereich dieser Ungleichung beachten, da gelten muss:

[mm] $x^2-x-12 [/mm] \ = \ (x-4)*(x+3) \ [mm] \ge [/mm] \ 0$

Diese Ungleichung ist erfüllt, wenn beide Faktoren negativ sind oder beide positiv:

$x-4 \ < \ 0$   [mm] $\gdw$ [/mm]   $x \ < \ 4$
$x+3 \ < \ 0$   [mm] $\gdw$ [/mm]   $x \ < \ -3$
[mm] $\Rightarrow$ [/mm]   $x \ < \ -3$

$x-4 \ [mm] \ge [/mm] \ 0$   [mm] $\gdw$ [/mm]   $x \ [mm] \ge [/mm]  \ 4$
$x+3 \ [mm] \ge [/mm]  \ 0$   [mm] $\gdw$ [/mm]   $x \ [mm] \ge [/mm]  \ -3$
[mm] $\Rightarrow$ [/mm]   $x \ [mm] \ge [/mm]  \ 4$


Damit lautet der Definitionsbereich dieser Ungleichung, der bei der Lösung auch beachtet werden muss:

[mm] $\left] \ -\infty; \ -3 \ \right[ [/mm] \ \ [mm] \cup [/mm] \ \ [mm] \left[ \ 4; \ \infty \ \right[$ [/mm]


Da die Wurzel auch immer positive Werte liefert, kann der Bereich für negative $x_$ (wegen der rechten Seite der Ungleichung) auch gleich ausgeschlossen werden, so dass verbleibt:  [mm] $\left[ \ 4; \ \infty \ \right[$ [/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de