www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Wohlordnung auf \IN_{0}
Wohlordnung auf \IN_{0} < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wohlordnung auf \IN_{0}: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:30 So 21.04.2013
Autor: sarahharas

Aufgabe
Zeigen Sie:
a) für alle [mm] n\in \IN_{0} [/mm] besitzt jede nicht-leere Teilmenge von [mm] U_{n} [/mm] = {m [mm] \in \IN_{0} [/mm]  | m [mm] \le [/mm] n} ein kleinstes und ein größtes Element.

Hallo,.

ich habe mir schon ein paar Gedanken zu der Aufgabe gemacht, aber komme nicht weiter:

Die Aufgabe hat ja im Prinzip 2 Teile, einmal das kleinste Element zeigen und einmal zeigen dass es ein größtes gibt. Das würde ich gerne über die vollständige Induktion machen.
Ich habe mit erstmal gedacht, dass ich nen Widerspruchsbeweis mache, und annehmen, dass die Teilmenge T kein kleinstes Element besitzt. Aber irgendwie komme ich nicht weiter. und wie man das mit dem größten Element zeigen soll, dass verstehe ich gar nicht. Habt ihr vielleicht einen Tipp?

        
Bezug
Wohlordnung auf \IN_{0}: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 21.04.2013
Autor: reverend

Hallo Sarah,

> Zeigen Sie:
> a) für alle [mm]n\in \IN_{0}[/mm] besitzt jede nicht-leere
> Teilmenge von [mm][mm] U_{n}=\{m\in\IN_{0}|m\le{n}\} [/mm] ein
> kleinstes und ein größtes Element.
> Hallo,.

>

> ich habe mir schon ein paar Gedanken zu der Aufgabe
> gemacht, aber komme nicht weiter:

>

> Die Aufgabe hat ja im Prinzip 2 Teile, einmal das kleinste
> Element zeigen und einmal zeigen dass es ein größtes
> gibt.

Ja, ok.

> Das würde ich gerne über die vollständige
> Induktion machen.

Wozu? Das klingt zu aufwändig.

> Ich habe mit erstmal gedacht, dass ich nen
> Widerspruchsbeweis mache, und annehmen, dass die Teilmenge
> T kein kleinstes Element besitzt.

Klingt gut.

> Aber irgendwie komme ich
> nicht weiter. und wie man das mit dem größten Element
> zeigen soll, dass verstehe ich gar nicht.

Im Prinzip genauso. Vielleicht probierst Du also erstmal nur den Teil mit dem kleinsten Element.

> Habt ihr
> vielleicht einen Tipp?

Betrachten wir erstmal [mm] U_n. [/mm] Das kleinste Element ist die 0, das größte ist n. Was heißt das für Teilmengen von [mm] $U_n$? [/mm]

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de