Wronski-Det. vektorwert. Fkt. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sind die Vektoren [mm] x_1(t)=\begin{pmatrix} t \\ 1 \end{pmatrix} [/mm] und [mm] x_2(t)=\begin{pmatrix} t^2 \\ 2t \end{pmatrix}.
[/mm]
Gib die Wronski-Determinante von [mm] x_1 [/mm] und [mm] x_2 [/mm] an & das Intervall, auf dem die Funktionen linear unabhängig sind. |
Hallo!
Ich habe eine Frage zur Wronski-Determinante. Und zwar sind mir hier die Vektoren [mm] x_1(t)=\begin{pmatrix} t \\ 1 \end{pmatrix} [/mm] und [mm] x_2(t)=\begin{pmatrix} t^2 \\ 2t \end{pmatrix} [/mm] gegeben und ich werde nach der Wronski-Determinante gefragt. Bisher hatte ich es bei Wronski-Determinanten nur mit skalaren Funktionen zu tun, bei vektorwertigen bin ich mir etwas unsicher. Was haltet ihr davon?
[mm] W(x_1,x_2)(t)=\begin{vmatrix} \begin{pmatrix} t \\ 1 \end{pmatrix} & \begin{pmatrix} t^2 \\ 2t \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 2t \\ 2 \end{pmatrix} \end{vmatrix}=\begin{pmatrix} t \\ 1 \end{pmatrix}\begin{pmatrix} 2t \\ 2 \end{pmatrix}-\begin{pmatrix} 1 \\ 0 \end{pmatrix}\begin{pmatrix} t^2 \\ 2t \end{pmatrix}=2t^2+2-t^2=t^2+2
[/mm]
Macht das Sinn? Nun werde ich noch gefragt, in welchem Interval die Funktionen linear unabhängig sind. Ich kenne einen Satz, der besagt, wenn die Wronski-Determinante für mind. ein [mm] t_0 \in [/mm] I ungleich Null ist, dann sind die Funktionen in I linear unabhängig. Damit hab ich jetzt zwei Probleme:
1.) Irgendwie finde ich diese Aussage seltsam, denn wenn ich nun halt [mm] I=\mathbb [/mm] R festlege und nur einen einzigen Wert finde, für die die Wronski-Determinante ungleich Null ist, dann sind die Funktionen gleich auf ganz [mm] \mathbb [/mm] R linear unabhängig? Verallgemeinert sind dann zwei Funktionen demnach IMMER auf ganz [mm] \mathbb [/mm] R linear unabhängig, wenn sie es nur in einem einzigen Punkt sind? Das klingt irgendwie... unrichtig.
2.) Im konkreten Fall könnte ich ja nun mit [mm] t_0=1 [/mm] und obigem Satz schließen, dass die Funktionen auf ganz [mm] \mathbb [/mm] R linear unabhängig sein müssten. Das glaube ich aber nicht, denn wenn ich zum Beispiel Null einsetze, dann ist ja [mm] x_2(0)=\begin{pmatrix} 0 \\ 0 \end{pmatrix} [/mm] und demnach sind die Funktionen im Nullpunkt dann doch linear abhängig, oder?
Kann mir jemand helfen?
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=508737
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 Do 13.12.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|