www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Würfel
Würfel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Fr 04.03.2005
Autor: nitro1185

Hallo!!ich habe eine Frage zu folgender Aufageb.Bin mir nicht sicher ,ob mein Ansatz falsch ist.

In einem Becher sind zwei unterscheidbare ungezinkte Würfel .Der Becher wird geschüttelt und auf ein Tablett geleert.

Aufgabe: f: H ----> R; (i,j) ------> i+j

H ist die menge aller Elementarereignisse: H={(i,j) / i,j [mm] \in [/mm] {1,...,6}}

So nun soll ich folgendes berechnen:

[mm] \summe_{w \in H}^{36} [/mm] p(w)*f(w)

wobei p: w ---> [0,1] ; wahrscheinlichkeitsfunktion,die ich auch bestimmen musst

Meine idee:  w ---> 1/36

=>  [mm] \summe_{w \in H}^{36} [/mm] p(w)*f(w)= 1/36*  [mm] \summe_{w \in H}^{36} [/mm] *f(w) =

  1/36* [mm] \summe_{w \in H}^{36} [/mm] *(i+j)

Wie soll ich das noch weiter berechnen??mfg daniel


        
Bezug
Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Fr 04.03.2005
Autor: Stefan

Hallo Daniel!

Warum rechnest du denn keine konkreten Werte aus?

Es gilt ja:

[mm] $\summe_{w\in H} [/mm] p(w)f(w) = [mm] \summe_{k=2}^{12} P(\{(i,j) \in H\, : \, i+j=k\}) \cdot [/mm] k$.

Und weiter:

Das Ereignis "Augensumme $2$" hat die Wahrscheinlichkeit [mm] $\frac{1}{36}$. [/mm]
Das Ereignis "Augensumme $3$" hat die Wahrscheinlichkeit [mm] $\frac{2}{36}$. [/mm]
...
Das Ereignis "Augensumme $6$" hat die Wahrscheinlichkeit [mm] $\frac{5}{36}$. [/mm]
Das Ereignis "Augensumme $7$" hat die Wahrscheinlichkeit [mm] $\frac{6}{36}$. [/mm]
Das Ereignis "Augensumme $8$" hat die Wahrscheinlichkeit [mm] $\frac{5}{36}$. [/mm]
...
Das Ereignis "Augensumme $11$" hat die Wahrscheinlichkeit [mm] $\frac{2}{36}$. [/mm]
Das Ereignis "Augensumme $12$" hat die Wahrscheinlichkeit [mm] $\frac{1}{36}$. [/mm]

Jetzt muss du berechnen:

[mm] $\frac{1}{36} \cdot [/mm] 2 + [mm] \frac{2}{36} \cdot [/mm] 3 + [mm] \ldots$ [/mm]

Viele Grüße
Stefan

Bezug
                
Bezug
Würfel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Sa 05.03.2005
Autor: nitro1185

Hallo stefan!!

Danke für deine Antwort und Tipps!!!MFG Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de