www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Würfel
Würfel < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 So 25.01.2009
Autor: Uncle_Sam

Aufgabe
Ein blauer und ein roter Würfel (beide ideal) werden gleichzeitig geworfen. Berechne die Wahrscheinlichkeit für die folgenden Ereignisse:

1) keinmal Augenzahl 6
2) zweimal Augenzahl 6
3) roter Würfel Augenzahl 6
4) einmal Augenzahl 6

Hallo,

kann mir einer helfen, denn ich habe k.P.. Der Lehrer hat nur Fach-Chinesisch gesredet und keiner weiß irgendwas. Unser Mathebuch ist auch keine große Hilfe.

Mfg
Uncle Sam

        
Bezug
Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 So 25.01.2009
Autor: luis52

Moin,

du hast 6 Moeglichkeiten beim ersten und 6 Moeglichkeiten beim zweiten Wuerfel. Werden beide Wuerfel geworfen, so kannst du jeden Ausgang mit  einem Paar (i,j) identifizieren. So bedeutet (2,3), dass auf dem ersten Wuerfel eine 2 und auf dem zweiten eine 3 erscheint.

Es gibt offenbar 36 derartiger Paare. Die Wsk, dass das Paar (i,j) gewuerfelt wird, wird im sog. Gleichmoeglichkeitsmodell mit 1/36      angesetzt. Entsprechend wird die Wsk dafuer, dass eine Augensumme von hoechstens 4 erscheint, mit 6/36 berechnet, denn dazu gehoeren (1,1), (2,1), (1,2), (1,3), (2,2) und (3,1).

Willst du die Aufgabe mit diesen Informationen mal selbst versuchen?
            


vg Luis


Bezug
                
Bezug
Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 25.01.2009
Autor: Uncle_Sam

Okay,

zu 2) ist klar 1/36, da (66)
zu 3) ist auch klar 6/36, da (61)(62)(63)(64)(65)(66)

nur 1) und 4)
1) keinmal Augenzahl 6, komm 26/36, als Lösung sagte der Lehrer 69,44%, was 25/36 heißt nur wie
3) einmal Augenzahl 6, Lösung soll 27,78% sein, wie


Bezug
                        
Bezug
Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 So 25.01.2009
Autor: luis52

>
>  
> nur 1) und 4)
>  1) keinmal Augenzahl 6, komm 26/36, als Lösung sagte der
> Lehrer 69,44%, was 25/36 heißt nur wie

Frag doch mal den Moeglichkeiten, dass eine Sechs *dabei* ist. Ich zaehle 11: (61)(62)(63)(64)(65)(66)(56)(46)(36)(26)(16). Also gibt es 25, wo die 6 nicht dabei ist.


>  3) einmal Augenzahl 6, Lösung soll 27,78% sein, wie
>  

Hierauf kann ich mir auch keinen Reim machen.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de