www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Würfeln
Würfeln < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfeln: Brett vorm Kopf
Status: (Frage) beantwortet Status 
Datum: 13:33 So 12.11.2006
Autor: useratmathe

Aufgabe
Ein fairer Würfel wird 7 mal gewurfen.
Wie hoch ist die WK für mindestens eine 6.

Hallo,

so zur Berechnung hat ich mir folgendes mitgeschrieben:
[mm] 1-\bruch{5}{6}^{7}=0,7209 [/mm]

Warum geht es denn über das Gegenereignis und nicht mit beispielsweise [mm] \bruch{1}{6}^{7}? [/mm]

irgendwie komisch...

        
Bezug
Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 So 12.11.2006
Autor: Zwerglein

Hi, useratmathe,

> Ein fairer Würfel wird 7 mal gewurfen.
>  Wie hoch ist die WK für mindestens eine 6.

> so zur Berechnung hat ich mir folgendes mitgeschrieben:
>  [mm]1-\bruch{5}{6}^{7}=0,7209[/mm]

Vergiss die Klammer nicht! Es muss heißen:

1 - [mm] (\bruch{5}{6})^{7} [/mm]
  

> Warum geht es denn über das Gegenereignis und nicht mit
> beispielsweise [mm]\bruch{1}{6}^{7}?[/mm]

Es geht natürlich auch "direkt"! Ist aber eine Frage des Rechenaufwandes, denn "mindestens eine" heißt bei 7 Würfen:
eine 6, zwei 6en, drei 6en, ... sieben 6en.

Dann wäre Deine Rechnung:

P(E) = [mm] \vektor{7 \\ 1}*(\bruch{1}{6})^{1}*(\bruch{5}{6})^{6} [/mm] + [mm] \vektor{7 \\ 2}*(\bruch{1}{6})^{2}*(\bruch{5}{6})^{5} [/mm] +  [mm] \vektor{7 \\ 3}*(\bruch{1}{6})^{3}*(\bruch{5}{6})^{4} [/mm] + ... + [mm] \vektor{7 \\ 7}*(\bruch{1}{6})^{7}*(\bruch{5}{6})^{0} [/mm]

Wer möchte sowas freiwillig ausrechnen?

mfG!
Zwerglein

Bezug
                
Bezug
Würfeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 So 12.11.2006
Autor: useratmathe

dankeschön, das hilft

Bezug
                
Bezug
Würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 So 12.11.2006
Autor: useratmathe

Also so ganz hab ich es doch noch nicht "durschaut":

warum geht es einfach
1 -  [mm] (\bruch{5}{6})^{7} [/mm]
zu rechnen und umgekehrt muss man

P(E) = [mm] \vektor{7 \\ 1}\cdot{}(\bruch{1}{6})^{1}\cdot{}(\bruch{5}{6})^{6} [/mm]  +  [mm] \vektor{7 \\ 2}\cdot{}(\bruch{1}{6})^{2}\cdot{}(\bruch{5}{6})^{5} [/mm]  +  ...

soviel Aufwand betreiben? Wofür stehen denn die Faktoren, kann man das ausdrücken?

Danke

Bezug
                        
Bezug
Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 So 12.11.2006
Autor: Zwerglein

Hi, useratmathe,

Wenn Du einen Würfel 7 mal wirfst und bist nur am Ergebnis "6" als Treffer interessiert, gibt es 8 Möglichkeiten:
kein Treffer,
ein Treffer,
zwei Treffer,
...
sieben Treffer.
Die Summe aller 8 Wahrscheinlichkeiten ist dann logischerweise 1 bzw. 100%.

Wenn das Ereignis "mindestens ein Treffer" gefragt ist, so sind das - wie in meiner ersten Antwort erwähnt, sieben von den acht Möglichkeiten.
Da also nur 1 Ergebnis nicht berücksichtigt wird, kann man über das Gegenereignis ("nicht 0 Treffer") schneller zum Ziel kommen.

Noch dazu hast Du bei der anderen Methode den weiteren Nachteil, dass Du zur Berechnung der einzelnen Wahrscheinlichkeiten - wenn Du keine "fertige" Tabelle mit den entsprechenden Werten zur Verfügung hast - mit der Formel zur Binomialverteilung rechnen musst:

P(X=k) = B(n; p; k) = [mm] \vektor{n \\ k}*p^{k}*q^{n-k} [/mm]

(Das bedeutet übrigens auch: Wenn Du diese Formel nicht kennst, ist Dir dieser Weg sogar völlig versperrt!)

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de