www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Wurzelgleichung
Wurzelgleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelgleichung: quadrieren
Status: (Frage) beantwortet Status 
Datum: 18:22 So 24.02.2008
Autor: Asialiciousz

{x| [mm] 5\wurzel{x-1} -2\wurzel{2x+5} [/mm] = [mm] \wurzel{3x-5} [/mm] } [mm] \IR [/mm]

wenn ich bei dieser gleichung quadriere, wie würde sie dann im nächsten schritt aussehen?

bitte um Hilfe!

Danke! :D

        
Bezug
Wurzelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 So 24.02.2008
Autor: Tyskie84

Hallo!

Wir haben [mm] 5\wurzel{x-1} -2\wurzel{2x+5}=\wurzel{3x-5} [/mm] nun quadrieren wir: [mm] (5\wurzel{x-1} -2\wurzel{2x+5})^{2}=(\wurzel{3x-5})^{2} [/mm]

Beachte dass der erste Term eine Binomische Formel darstellt und dann gilt ja auch noch allgemein [mm] (\wurzel{x})^{2}=x. [/mm] Ein weiteres Wurzelgestz welches du brauchst ist: [mm] \wurzel[n]{a}*\wurzel[n]{b}=\wurzel[n]{a*b} [/mm]

Versuch mal damit weiterzukommen

[cap] Gruß



Bezug
                
Bezug
Wurzelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 So 24.02.2008
Autor: Asialiciousz

ich muss aba so ungefähr nach diesem schema arbeiten:

[mm] \wurzel{x²+3x+2} [/mm] = [mm] \wurzel{x²+17} [/mm]  ||()²

x²+3x+20x²17

< da fielen beide klammern auf beiden seiten weg...

stimmt dein zweiter schritt nach diesem schema dann auch??
dass ich die wurzeln da da lasse bei der anderen aufgabe?

Bezug
                        
Bezug
Wurzelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 So 24.02.2008
Autor: steppenhahn

Bei deiner Gleichung musst du dieses Prinzip zweimal anwenden (ich mach's mal an einem theoretischen Beispiel vor, du zeigst uns dann, ob du's verstanden hast indem du es mit deiner Aufgabe probierst):

   [mm] \wurzel{x} [/mm] = [mm] \wurzel{x+3} [/mm] - [mm] \wurzel{5*x-1} [/mm]

Nun das erste Mal quadrieren, rechts die binomische Formel beachten.

[mm] \gdw [/mm] x = [mm] \left(\wurzel{x+3} - \wurzel{5*x-1}\right)^{2} [/mm]

Nun rechts ausmultiplizieren (binomische Formel!)

[mm] \gdw [/mm] x = [mm] \left(\wurzel{x+3}\right)^{2} [/mm] - [mm] 2*\wurzel{x+3}*\wurzel{5*x-1} [/mm] + [mm] \left(\wurzel{5*x-1}\right)^{2} [/mm]

Ein bisschen vereinfachen:

[mm] \gdw [/mm] x = (x+3) - [mm] 2*\wurzel{x+3}*\wurzel{5*x-1} [/mm] + (5*x-1)

Anwenden des Wurzelgesetzes [mm] \wurzel{a*b} [/mm] = [mm] \wurzel{a}*\wurzel{b} [/mm]

[mm] \gdw [/mm] x = (x+3) - [mm] 2*\wurzel{(x+3)*(5*x-1)} [/mm] + (5*x-1)

Du siehst: Nun ist nur noch eine Wurzel da!

[mm] \gdw [/mm] x = 6*x+2 - [mm] 2*\wurzel{(x+3)*(5*x-1)} [/mm]

So und nun schiebst du alles "Wurzelloses" auf eine Seite:

[mm] \gdw [/mm] -5*x-2 = [mm] (-2)*\wurzel{(x+3)*(5*x-1)} [/mm]

Und wenn du nun noch einmal quadrierst, sind alle Wurzeln weg!

[mm] \gdw (-5*x-2)^{2} [/mm] = [mm] ((-2)*\wurzel{(x+3)*(5*x-1)})^{2} [/mm]

[mm] \gdw 25*x^{2} [/mm] + 20*x + 4 = 4*(x+3)*(5*x-1)

Bezug
                
Bezug
Wurzelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 So 24.02.2008
Autor: Asialiciousz

was muss ich weita machen??

ich versteh das nicht.. kannstu mia den nächsten schritt auch noch schreiben, aber mit erklärung noch dazu??

oder irgendwie was, das ich ergänzen muss?

Bezug
                        
Bezug
Wurzelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 So 24.02.2008
Autor: Tyskie84

Hallo!

Also nochmal: [mm] (5\wurzel{x-1} -2\wurzel{2x+5})^{2}=(\wurzel{3x-5})^{2} [/mm]
[mm] \Rightarrow 25(x-1)-20\wurzel{x-1}*\wurzel{2x+5}+4(2x+5)=3x-5 [/mm]
[mm] \Rightarrow [/mm] jetzt ausmultiplizieren und das folgende Wurzelgesetz verwenden [mm] \wurzel[n]{a}\cdot{}\wurzel[n]{b}=\wurzel[n]{a\cdot{}b} [/mm] um [mm] 20\wurzel{x-1}*\wurzel{2x+5} [/mm] zusammenzufassen.

[cap] Gruß



Bezug
                                
Bezug
Wurzelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 So 24.02.2008
Autor: Asialiciousz

[mm] \bruch{3}{2} [/mm] kommt raus?

Bezug
                                        
Bezug
Wurzelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 So 24.02.2008
Autor: Tyskie84

Hallo!

Das kannst du leicht überprüfen ob [mm] x=\bruch{3}{2} [/mm] richtig ist. setz das doch mal in deine Gleichung ein dann siehst du dass die Lösung flasch ist denn [mm] \wurzel{3*\bruch{3}{2}-5} [/mm] ist nicht definiert.

Schreib mal hier deine Rechnung auf dann sehen wir wo dein Fehler liegt.

[cap] Gruß

Bezug
                                                
Bezug
Wurzelgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 So 24.02.2008
Autor: Asialiciousz

[mm] (5\wurzel{x-1}-2\wurzel{2x+5})² [/mm] = [mm] (\wurzel{3x-5})² [/mm]

25x [mm] (x-1)-20\wurzel{x-1} [/mm] * [mm] \wurzel{2x+5} [/mm] +4 (2x+5) = 3x-5
[mm] 25x-25-20\wurzel{x-1}*\wurzel{2x+5} [/mm] +8x +20 = 3x-5
33x-5-20 [mm] \wurzel{(x-1)*(2x+5)} [/mm] = 3x-5
33x- 25 = 3x-5 || -3x +25
30x = 20

.....

Bezug
                                                        
Bezug
Wurzelgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 So 24.02.2008
Autor: Tyskie84

Hallo!

> [mm](5\wurzel{x-1}-2\wurzel{2x+5})²[/mm] = [mm](\wurzel{3x-5})²[/mm]
>  
> 25x [mm](x-1)-20\wurzel{x-1}[/mm] * [mm]\wurzel{2x+5}[/mm] +4 (2x+5) = 3x-5
>  [mm]25x-25-20\wurzel{x-1}*\wurzel{2x+5}[/mm] +8x +20 = 3x-5

[ok] bis hier hin ist alles in ordnung-

>  33x-5-20 [mm]\wurzel{(x-1)*(2x+5)}[/mm] = 3x-5
>  33x- 25 = 3x-5 || -3x +25
>  30x = 20
>

[notok] wie ist denn hier deine Wurzel wegefallen.  

> .....

Fangen wir hier an: [mm] 33x-5-20*\wurzel{2x²+3x-5}=3x-5 [/mm]
[mm] \gdw \wurzel{2x²+3x-5}=\bruch{3}{2}x [/mm]
[mm] \gdw 2x²+3x-5=\bruch{9}{4}x² [/mm]
[mm] \gdw [/mm] -0,25x²+3x-5=0
und diese Gleichung musst du noch lösen.

[cap] Gruß


Bezug
                                                        
Bezug
Wurzelgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 So 24.02.2008
Autor: steppenhahn

Wo ist denn die Wurzel plötzlich hinverschwunden? Bis sie weg ist, war alles richtig!


> [mm](5\wurzel{x-1}-2\wurzel{2x+5})²[/mm] = [mm](\wurzel{3x-5})²[/mm]
>  
> 25x [mm](x-1)-20\wurzel{x-1}[/mm] * [mm]\wurzel{2x+5}[/mm] +4 (2x+5) = 3x-5
>  [mm]25x-25-20\wurzel{x-1}*\wurzel{2x+5}[/mm] +8x +20 = 3x-5
>  33x-5-20 [mm]\wurzel{(x-1)*(2x+5)}[/mm] = 3x-5

[mm] \gdw [/mm] 33*x - [mm] 20*\wurzel{(x-1)*(2x+5)} [/mm] = 3*x

[mm] \gdw -20*\wurzel{(x-1)*(2x+5)} [/mm] = -30*x

[mm] \gdw \wurzel{(x-1)*(2x+5)} [/mm] = [mm] \bruch{3}{2}*x [/mm]

Nun nochmal quadrieren!

Bezug
                                                                
Bezug
Wurzelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 So 24.02.2008
Autor: Asialiciousz

[mm] -\bruch{9}{4} [/mm] kommt raus?

Bezug
                                                                        
Bezug
Wurzelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 24.02.2008
Autor: Tyskie84

Hallo!

Es gilt das: [mm] \wurzel{(x-1)\cdot{}(2x+5)}=\bruch{3}{2}x [/mm] Nun quadrieren
[mm] \Rightarrow (x-1)*(2x+5)=(\bruch{3}{2}x)² [/mm]
[mm] \Rightarrow 2x²+3x-5=\bruch{9}{4}x² [/mm]
[mm] \Rightarrow -\bruch{1}{4}x²+3x-5=0 [/mm] jetzt mit -4 multiplizieren
[mm] \Rightarrow [/mm] x²-12x+20=0

[cap] Gruß

P.S Bitte mach dir auch die Mühe deine Lösungswege hier. es reicht nicht nur ein ergebnis hier reinzuschreiben denn dann weiss ich ja nicht welchen fehler du gemacht hast. Ich mache mir ja auch die Mühe die Lösungswege hier reinzuschreiben anstatt dir nur die Lösung zugeben. Damit würdest du ja auch nichts anfangen können.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de