www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Wurzelgleichung
Wurzelgleichung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Di 27.09.2011
Autor: Crash123

Aufgabe
Bestimmen Sie alle Lösungen der folgenden Wurzelgleichung.

[mm] \wurzel{x-1}-\wurzel{x+1}=-1 [/mm]

Hallo zusammen,

ich habe für die Lösung von Wurzelgleichungen eine kleine regel.

1. Wurzel isolieren
2. Quadrieren beider Seiten
3. Lösen d. wurzelfreien Gleichung
4. Probe

Könnte mir hierbei jemand sagen was genau mit dem ersten Schritt gemeint ist?

Rechnung:
[mm] \wurzel{x-1}-\wurzel{x+1}=-1 [/mm]
- Quadrieren
x-1-x+1=1
Ist das soweit Richtig? Wie geht es nun weiter?

Lösung ist: x = 5/4

Danke für kommende Antworten. =)



        
Bezug
Wurzelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 27.09.2011
Autor: abakus


> Bestimmen Sie alle Lösungen der folgenden
> Wurzelgleichung.
>  
> [mm]\wurzel{x-1}-\wurzel{x+1}=-1[/mm]
>  Hallo zusammen,
>  
> ich habe für die Lösung von Wurzelgleichungen eine kleine
> regel.
>  
> 1. Wurzel isolieren
>  2. Quadrieren beider Seiten
>  3. Lösen d. wurzelfreien Gleichung
>  4. Probe
>  
> Könnte mir hierbei jemand sagen was genau mit dem ersten
> Schritt gemeint ist?

Hallo,
zunächst mal sollte vorher ein Schritt 0 kommen:
0. Festlegung des Lösungsgrundbereichs
Im unserem Fall also [mm] x\ge [/mm] 1 UND x [mm] \ge-1, [/mm] zusammengefasst: [mm] x\ge [/mm] 1.

Isolieren der Wurzel bedeutet, dass es nur noch EINE Wurzel gibt, die ALLEIN auf einer Seite der Gleichung steht.

>  
> Rechnung:
>  [mm]\wurzel{x-1}-\wurzel{x+1}=-1[/mm]
>  - Quadrieren
>  x-1-x+1=1
>  Ist das soweit Richtig?

Nein, eher grausam. Wenn du eine Differenz (a-b) quadrierst, ist das Ergebnis nicht [mm] a^2-b^2 [/mm] und auch nicht [mm] a^2+b^2 [/mm] (und auch nicht ein Mischmasch davon wie bei dir), sondern laut binomischer Formel
[mm] a^2-2ab+b^2 [/mm]
Aus  [mm]\wurzel{x-1}-\wurzel{x+1}=-1[/mm]
folgt durch quadrieren
[mm](\wurzel{x-1})^2-2\wurzel{x-1}\wurzel{x+1}+(\wurzel{x+1})^2=(-1)^2[/mm]

Versuche ab hier mal selbst.
Gruß Abakus

> Wie geht es nun weiter?
>  
> Lösung ist: x = 5/4
>  
> Danke für kommende Antworten. =)
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de