www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Wurzeln multiplizieren
Wurzeln multiplizieren < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzeln multiplizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Mi 01.10.2014
Autor: begker1

Aufgabe
[mm] \wurzel{9}*\wurzel{4} [/mm]

Hallo,
ich hatte mal eine ganz triviale Frage: hat die Aufgabe [mm] \wurzel{9}*\wurzel{4} [/mm]
nicht im Grunde zwei Lösungen, nämlich 6 und -6.
[mm] \wurzel{9} [/mm] ist ja 3 und -3 und [mm] \wurzel{4} [/mm] ist 2 und -2.
Wenn ich jetzt alle möglichen Kombinationen aus 3 vs. -3 bzw. 2 vs. -2 multipliziere, dann erhalte ich die beiden Ergebnisse 6 (3*3, -3*-3) und -6 (2*-3, 3*-2).
Was meint ihr denn? Ist das zu abwegig?


        
Bezug
Wurzeln multiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Mi 01.10.2014
Autor: hanspeter.schmid

Die Frage ist gar nicht abwegig!

Antwort: das kommt einzig darauf an, wie die Funktion [mm] $\sqrt{4}$ [/mm] definiert ist. Wenn sie zwei Werte hat, [mm] $\sqrt{4}=\pm [/mm] 2$, hast Du recht. Wenn sie, wie manchmal auch üblich, als einwertig, also [mm] $\sqrt{4}=2$, [/mm] definiert ist, hast Du nicht recht.

Hilft das?



Bezug
                
Bezug
Wurzeln multiplizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mi 01.10.2014
Autor: begker1

Hallo, danke für die Antwort!!
Ich muss eine Aufgabe lösen, bei der im Grunde drei Wurzeln miteinander multipliziert werden. Es handelt sich nicht um eine Funktion, sonderm um eine Gleichung mit einer Unbekannten (Matheolympiade).
Es wurden keine Einschränkungen gemacht - d.h. alle möglichen Kombinationen müssen durchgerechnet werden. Ist das richtig?
Nochmals vielen Dank!!


Bezug
                        
Bezug
Wurzeln multiplizieren: Quadratwurzel ist eindeutig
Status: (Antwort) fertig Status 
Datum: 18:11 Mi 01.10.2014
Autor: Al-Chwarizmi


> Hallo, danke für die Antwort!!
>  Ich muss eine Aufgabe lösen, bei der im Grunde drei
> Wurzeln miteinander multipliziert werden. Es handelt sich
> nicht um eine Funktion, sonderm um eine Gleichung mit einer
> Unbekannten (Matheolympiade).
>  Es wurden keine Einschränkungen gemacht - d.h. alle
> möglichen Kombinationen müssen durchgerechnet werden. Ist
> das richtig?
> Nochmals vielen Dank!!


Hallo,

erstens:  falls es sich um eine aktuelle Wettbewerbsaufgabe
handeln sollte, sollte dir dabei hier niemand helfen.

Zu deiner ersten Frage aber:

Quadratwurzeln (in [mm] \IR) [/mm] sind eindeutig oder aber gar
nicht definiert. Die Quadratwurzel aus 9 ist zum Beispiel
gleich 3 (und nicht auch noch gleich minus 3).

Wenn es aber z.B. um die Lösungen der Gleichung  [mm] x^2=9 [/mm]
geht, so hat diese Gleichung zwei reelle Lösungen, nämlich
$\ [mm] x_1\ [/mm] =\ 3$  und  $\ [mm] x_2\ [/mm] =\ -3$ .

Die erste ist die Quadratwurzel aus 9:   $\ [mm] x_1\ [/mm] =\ 3 \ =\ [mm] \sqrt{9}$ [/mm]

Die zweite Lösung [mm] x_2 [/mm] ist nicht eine "zweite Quadratwurzel" aus 9,
sondern es gilt:

     $\ [mm] x_2\ [/mm] =\ -3 \ =\ \ [mm] -\, \sqrt{9}\ [/mm] =\ Gegenzahl\ der\ (nach\ wie\ vor\ positiven)\ Quadratwurzel\ von\ 9$

LG
Al-Chwarizmi

        

Bezug
                        
Bezug
Wurzeln multiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 01.10.2014
Autor: HJKweseleit

Wenn du irgendwo liest [mm] x=\pm\wurzel{5}, [/mm] so bedeutet dies, dass x entweder [mm] +\wurzel{5} [/mm] oder [mm] -\wurzel{5} [/mm] ist, aber [mm] \wurzel{5} [/mm] selber ist immer ein positiver Wert. Wenn das nicht so wäre, gäbe es z.B. für die Rechnung [mm] \wurzel{5}+\wurzel{6}+\wurzel{7} [/mm] 8 verschiedene Ergebnisse, weil es ja für jeden Wurzelwert 2 Möglichkeiten gäbe. Und das kann ja wohl nicht sinnvoll sein.

Bezug
                                
Bezug
Wurzeln multiplizieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Mi 01.10.2014
Autor: Al-Chwarizmi


> Wenn du irgendwo liest [mm]x=\pm\wurzel{5},[/mm] so bedeutet dies,
> dass x entweder [mm]+\wurzel{5}[/mm] oder [mm]-\wurzel{5}[/mm] ist, aber
> [mm]\wurzel{5}[/mm] selber ist immer ein positiver Wert. Wenn das
> nicht so wäre, gäbe es z.B. für die Rechnung
> [mm]\wurzel{5}+\wurzel{6}+\wurzel{7}[/mm] 8 verschiedene Ergebnisse,
> weil es ja für jeden Wurzelwert 2 Möglichkeiten gäbe.
> Und das kann ja wohl nicht sinnvoll sein.


Hallo,

ich möchte da gerne noch ergänzend bemerken, wann
die Schreibweise mit dem  [mm] \pm [/mm]  wirklich verhängnisvoll
ist. Grundsätzlich möchte ich die Verwendung des Zeichens
überhaupt nicht unterstützen (auch weil das "plusminus"
auch noch umgangssprachlich in verschiedenen und nicht
klar definierten oder wenigstens verschwommenen
Bedeutungen verwendet wird).

Es mag z.B. noch angehen, etwa die Schreibweise

     $\ x\ =\ [mm] \pm\, [/mm] 3$

als "lockere" Abkürzung für die klare Notation

     $\ x\ =\ 3\ \  [mm] \vee\ [/mm] \ x\ =\ [mm] -\,3$ [/mm]

zu benützen. Empfehlen will ich diese Art der Abkürzung
aber nicht. Wenn man es kurz mag, aber auch auf korrekte
Notation bedacht ist, sollte man dann
lieber einfach schreiben:

      $\ |x|\ =\ 3$

Echt katastrophal wird es aber, wenn dann etwa geschrieben
wird:

      $\ [mm] \sqrt{9}\ [/mm] =\ [mm] \pm\,3$ [/mm]

Manche Mathelehrer könnten sich die Haare darüber raufen,
wie hartnäckig dann solche falschen Schreibweisen in den
Köpfen einiger Schüler hängen bleiben und kaum mehr
auszutreiben sind.

LG ,   Al-Chw.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de