www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - ZFE
ZFE < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ZFE: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 So 11.11.2012
Autor: xxela89xx

Aufgabe
Ein idealer Würfel werde dreimal hintereinander geworfen. Es sei A das Ereignis "die Augensumme der drei Würfe ist 6." Geben Sie für i aus {1,2,3} jeweils eine Interpretation der Elemente von Omega­i und eine Abbildung pi: ­Omegai -> [0; 1] an, so dass (Omega­i, pi) ein für diese Situation geeignetes endliches Zufallsexperiment (mit Wahrscheinlichkeitsverteilung Pi) ist. Stellen Sie außerdem jeweils A als Teilmenge von ­i dar, indem Sie explizit alle Elemente von A aufzählen und berechnen Sie die Wahrscheinlichkeit Pi(A). Dabei gilt:
a) Omega­1 := {1,..., [mm] 6}^3, [/mm]
b) Omega­2 := {(a,b, c) aus {1,..., [mm] 6}^3 [/mm]  | a [mm] \ge [/mm] b [mm] \ge [/mm] c},
c) ­Omega3 :=  {3,4,..., 18}.

Hallöchen,

Omega i ={(w1,w2,w3) aus Omega mit w1+w2+w3 =6}

Ist das richtig?

LG

        
Bezug
ZFE: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 So 11.11.2012
Autor: xxela89xx

Ist die Aufgabe so kompliziert, dass keiner mir einen Tipp geben kann :(

Bezug
        
Bezug
ZFE: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 So 11.11.2012
Autor: kamaleonti


> Ein idealer Würfel werde dreimal hintereinander geworfen.
> Es sei A das Ereignis "die Augensumme der drei Würfe ist
> 6." Geben Sie für i aus {1,2,3} jeweils eine
> Interpretation der Elemente von Omega­i und eine Abbildung
> pi: ­Omegai -> [0; 1] an, so dass (Omega­i, pi) ein für
> diese Situation geeignetes endliches Zufallsexperiment (mit
> Wahrscheinlichkeitsverteilung Pi) ist. Stellen Sie
> außerdem jeweils A als Teilmenge von ­i dar, indem Sie
> explizit alle Elemente von A aufzählen und berechnen Sie
> die Wahrscheinlichkeit Pi(A). Dabei gilt:
>  a) Omega­1 := {1,..., [mm] 6}^3, [/mm]
>  b) Omega­2 := {(a,b, c) aus [mm] {1,...,6}^3 [/mm]  | a [mm] \ge [/mm] b [mm] \ge [/mm] c},
>  c) ­Omega3 :=  {3,4,..., 18}.
>  Hallöchen,
>  
> Omega i ={(w1,w2,w3) aus Omega mit w1+w2+w3 =6}
>
> Ist das richtig?

Nein.

Der Grund warum dir bisher noch niemand geantwortet hat, mag zum einen die sehr unordentlich aufgeschriebene Aufgabenstellung (Tippfehler beseitigen!) und dein ebenso lustloser Lösungsansatz sein.

In der Aufgabe steht ein ganzer Fragenkatalog.

Fangen wir mal mit c) [mm] \Omega_3=\{3,\ldots,18\} [/mm] an. Die Elemente von [mm] \Omega_3 [/mm] sind die möglichen Augensummen.
Gib ein W'maß darauf an und beschreibe das Ereignis A.

LG



Bezug
        
Bezug
ZFE: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Mo 12.11.2012
Autor: tobit09

Hallo xxela89xx,


> Omega i ={(w1,w2,w3) aus Omega mit w1+w2+w3 =6}
>
> Ist das richtig?

Die [mm] $\Omega_i$ [/mm] sind ja schon durch die Aufgabenstellung gegeben.

Falls du hier das Ereignis A als Teilmenge von [mm] $\Omega_1$ [/mm] meintest, liegst du richtig.


Die Teilaufgaben lauten ja:
1. Jeweils Interpretation der Elemente von [mm] $\Omega_i$ [/mm] angeben.
2. Jeweils [mm] $p_i$ [/mm] angeben.
3. Jeweils $A$ als Teilmenge von [mm] $\Omega_i$ [/mm] darstellen.
4. Jeweils [mm] $P_i(A)$ [/mm] bestimmen.

Ich würde mit 1. und 3. beginnen.

2. ist für i=2 und i=3 aus meiner Sicht nicht so ohne Weiteres möglich. Daher würde ich zunächst 2. und 4. für i=1 bearbeiten. Dann kannst du mithilfe des für i=1 gegebenen Modells die Wahrscheinlichkeiten bestimmen, die du benötigst, um 2. für i=2 und i=3 zu lösen.

Als letztes ist dann noch 4. für i=2 und i=3 zu lösen.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de