www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Zahl einer Gleichung bestimmen
Zahl einer Gleichung bestimmen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahl einer Gleichung bestimmen: Lösungsansatz benötigt
Status: (Frage) beantwortet Status 
Datum: 14:50 So 02.12.2012
Autor: BerlinerNo65536

Aufgabe
Aus der natürlichen Zahl n mit n ≡ 2mod9 entsteht die Zahl
z = 61323 n³ + 597 n + 133
Bestimmen Sie die kleinste natürliche Zahl r, sodass z = 3k + r mit geeigneter
natürlicher Zahl k (k ist nicht anzugeben).

Guten Tag!

Ich bin derzeit mit dieser Aufgabe beschäftigt, mir fehlt jedoch ein geeigneter Lösungsansatz, auch wenn ich mir sicher bin, dass die Lösung recht trivial sein sollte.

Offene Fragen, die sich mir jetzt stellen: Was genau muss ich beachten, wenn "n = 2mod9" ist? Für mich bedeutet das, dass n = 0 mit dem Rest 2 ist, wie genau ich das aber dann weiter einbinde ist mir nicht klar. Soll ich jetzt für n einfach 2 einsetzen und dann 61323 n³ + 597 n + 133 = 3k + r schreiben / Werte hierfür einsetzen?

Es wäre nett, wenn mir jemand sagen könnte, ob ich auf dem richtigen Weg bin oder die Aufgabenstellung falsch verstanden habe.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zahl einer Gleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:58 Di 04.12.2012
Autor: Walde

hi berliner,



> Aus der natürlichen Zahl n mit n ≡ 2mod9 entsteht die
> Zahl
>  z = 61323 n³ + 597 n + 133
>  Bestimmen Sie die kleinste natürliche Zahl r, sodass z =
> 3k + r mit geeigneter
>  natürlicher Zahl k (k ist nicht anzugeben).
>  Guten Tag!
>  
> Ich bin derzeit mit dieser Aufgabe beschäftigt, mir fehlt
> jedoch ein geeigneter Lösungsansatz, auch wenn ich mir
> sicher bin, dass die Lösung recht trivial sein sollte.
>
> Offene Fragen, die sich mir jetzt stellen: Was genau muss
> ich beachten, wenn "n = 2mod9" ist? Für mich bedeutet das,
> dass n = 0 mit dem Rest 2 ist, wie genau ich das aber dann
> weiter einbinde ist mir nicht klar. Soll ich jetzt für n
> einfach 2 einsetzen und dann 61323 n³ + 597 n + 133 = 3k +
> r schreiben / Werte hierfür einsetzen?

Du meinst glaube ich das Richtige, aber so ist es nicht in Ordnung.

$ n [mm] \equiv [/mm] 2$ mod $9$  heisst doch $ n-2 [mm] \equiv [/mm] 0$ mod $9$, also n-2 ist vielfaches von 9, in Gleichungsschreibweise $ n-2= [mm] a\cdot{}9 [/mm] $  mit [mm] a\in\IN [/mm] geeignet, bzw. $n=a*9+2$

Das kannst du jetzt in z einsetzen und suchst dann das kleinste r, so dass z-r durch 3 teilbar ist.



>
> Es wäre nett, wenn mir jemand sagen könnte, ob ich auf
> dem richtigen Weg bin oder die Aufgabenstellung falsch
> verstanden habe.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG walde

EDIT: bei nochmaligem Hinsehen, stelle ich fest, dass 61329 und 597 schon durch 3 teilbar sind, man kann also auf den Aufwand mit dem n verzichten und ziemlich direkt ein r Angeben, so dass z-r durch 3 teilbar ist. Du weisst ja, eine Summe ist durch eine Zahl teilbar, wenn alle Summanden durch die Zahl teilbar sind. Probleme macht also nur 133-r...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de