www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Zahlenfolge
Zahlenfolge < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Di 24.08.2004
Autor: Claudia

Gegeben sind die Zahlenfolgen
a) a tiefgestellter Text n=n 0,5
b) a tiefgestellter Text n=n-n hochgestellter Text 2
jeweils 5 Folgeglieder ausrechnen und a tiefgestellter Text 100 und a tiefgestellter Text 500

a) n=1  a tiefgestellter Text 1=1*0.5=0,5
   bei n=2 ist es1
   bei n=3 ist es1,5
   bei n=4 ist es 2
   bei n=5 ist es 2,5
   bei n=100 ist es 50
   bei n=500 ist es 250

b) bei n=1 ist es 0
    bei n=2 ist es -2
    bei n=3 ist es -6
    bei n=4 ist es -12
    bei n=5 ist es -20
    bei n=100 ist es -9900
    bei n=500 ist es -249500

Ich habe diese Frage in keinem weiteren Forum gestellt.Stimmen die Ergenisse?Ich habe diese Frage in keinem weiteren Forum gestellt.

Überprüfen ob die 17, 1, 0 -1, -20 Glieder der Zahlenfolge sind?

a)17=n 0,5
   n=34  
   a tiefgestellter Text 34 = 17
ich habe alles so ausgerechnet und komme zu dem Ergebnis das 1,0,-1,-20 Glieder der Zahlenfolge sind

b) Hier verstehe ich nicht wie man die Gleichung ausrechnet
ich würde bei der 1 die Wurzel aus 1 ziehen un komme dann auf eins und 1 - 1 = 0, so würde die 1 ja stimmen, wie ich ja oben in b ausgerechnet habe

Wie mache ich das bei der 17, weil die Wurzel aus 17 ist ja 4,1231 und 17 -  4,1231= 12,8769 und wäre somit kein glied der Zahlenfolge.
IIch habe diese Frage in keinem weiteren Forum gestellt.st das so richtig, irgendwie kann ichmir das nicht vorstellen.Ich habe diese Frage in keinem weiteren Forum gestellt.        

    


        
Bezug
Zahlenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Di 24.08.2004
Autor: informix

Hallo Claudia,

> Gegeben sind die Zahlenfolgen
> a) a tiefgestellter Text n=n 0,5

also: a) an=n * 0,5
  b) an=n-n2

>  jeweils 5 Folgeglieder ausrechnen und a100 und a500
>  
> a) n=1  a1 =1*0.5=0,5
>     bei n=2 ist es 1
>     bei n=3 ist es 1,5
>     bei n=4 ist es 2
>     bei n=5 ist es 2,5
>     bei n=100 ist es 50
>     bei n=500 ist es 250

[ok]

> b) bei n=1 ist es 0
>      bei n=2 ist es -2
>      bei n=3 ist es -6
>      bei n=4 ist es -12
>      bei n=5 ist es -20
>      bei n=100 ist es -9900
>      bei n=500 ist es -249500

[ok]

> Ich habe diese Frage in keinem weiteren Forum
> gestellt.Stimmen die Ergenisse?Ich habe diese Frage in
> keinem weiteren Forum gestellt.
>  
> Überprüfen ob die 17, 1, 0 -1, -20 Glieder der Zahlenfolge
> sind?
>  
> a)17=n 0,5
>     n=34  
> a34 = 17

[ok]

>   ich habe alles so ausgerechnet und komme zu dem Ergebnis
> das 1,0,-1,-20 Glieder der Zahlenfolge sind

Wie kann denn [mm]-1=n*0,5[/mm] richtig sein?!
Bei Folgen nimmt man in der Regel [mm] n\ge0 [/mm] an.
Überprüfe das bitte noch einmal.

> b) Hier verstehe ich nicht wie man die Gleichung
> ausrechnet.

Setze doch die einzelnen Zahlen einfach in folgende Gleichung ein:
[mm]a_{n}=n-n^{2}[/mm]
und beachte, dass n eine natürliche Zahl sein soll.

>  ich würde bei der 1 die Wurzel aus 1 ziehen un komme dann
> auf eins und 1 - 1 = 0, so würde die 1 ja stimmen, wie ich
> ja oben in b ausgerechnet habe
>  
> Wie mache ich das bei der 17, weil die Wurzel aus 17 ist ja
> 4,1231 und 17 -  4,1231= 12,8769 und wäre somit kein glied
> der Zahlenfolge.
>  IIch habe diese Frage in keinem weiteren Forum gestellt.st
> das so richtig, irgendwie kann ichmir das nicht
> vorstellen.

Nun zeig uns mal deine neuen Ergebnisse, damit wir sie überprüfen können.


Bezug
                
Bezug
Zahlenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Mi 25.08.2004
Autor: Claudia

zu Frage b) 17,1,0,-1.-20 Glieder der Zahlenfolge sind

a tiefgestellter Text n=n-n hochgestellter Text 2
In die Gleichung eingesetzt ist es
17=n-n hochgestellter Text 2
Als nächstes würde ich die Wurzel aus 17 ziehen, doch die Wurzel aus -17 geht ja nicht. Wie stellt man die Gleichung jetzt nach n um?
Das gleche wäre bei der 1 mit dem Minus beim Wurzel ziehen.
Bei der -1 und -20 werden dann beide posoiv, wenn aus - +- =+ wird
und ich dann einfach die wurzel ziehe.
bei 1 die wurzel aus 1 ist 1 und somit 1 =n Gliede der Zahlefolge
bei 20 die wurzel aus 20 ist  somit 4.4721=n kein Glied der Zahlenfolge



Bezug
                        
Bezug
Zahlenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Mi 25.08.2004
Autor: Stefan

Liebe Claudia!

Es gibt soooo viele Möglichkeiten diese Aufgabe zu lösen. :-)


1) Nutze aus (zeige dies zunächst), dass die Folge [mm] $a_n=n-n^2$ [/mm] streng monoton fallend ist, und dass [mm] $a_1=0$ [/mm] gilt.

D.h. sobald entweder die in Frage kommende Zahl $x$ positiv ist oder sobald es ein $n [mm] \in \IN$ [/mm] gibt mit

[mm] $a_{n+1} [/mm] < x < [mm] a_n$, [/mm]

kann $x$ nicht Teil der Folge sein.


2) Argumentiere über die $p-q$-Formel:

Aus [mm] $x=a_n$ [/mm] für eine $n [mm] \in \IN$ [/mm] folgt: [mm] $n^2 [/mm] - n [mm] +x=n^2 [/mm] - n + [mm] a_n= [/mm] 0$

und damit:

[mm] $n_{1,2} [/mm] = [mm] \frac{1}{2} \pm \sqrt{\frac{1}{4} - x} [/mm] = [mm] \frac{1}{2} \pm \frac{1}{2} \sqrt{1- 4x}$. [/mm]

Es gibt nur dann eine Lösung $n [mm] \in \IN$, [/mm] wenn $1-4x$ eine Quadratzahl ist. Prüfe also,  ob für die in Frage kommenden Zahlen $x$ der Ausdruck $1-4x$ eine Quadratzahl ist.


3) Argumentiere über die Faktorisierung:

Aus [mm] $a_n=x$ [/mm] folgt:

$x = [mm] a_n [/mm] = n [mm] \cdot [/mm] (1-n)$,

also:

$-x = n [mm] \cdot [/mm] (n-1)$.

Prüfe also, ob $-x$ das Produkt zweier aufeinanderfolgender natürlicher Zahlen ist.


Suche dir eine Möglichkeit aus. Ich persönlich finde die dritte am elegantesten (aber das ist vermutlich eher der Standpunkt der etwas höheren Mathematik, für Schülerinnen und Schüler würde ich die zweite Methode empfehlen, die wohl auch informix im Sinn hatte, nehme ich mal an).

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de