www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Zahlentheorie
Zahlentheorie < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlentheorie: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:50 So 04.11.2007
Autor: flachtrudeln

Aufgabe
Es seien n und k zwei natürliche Zahlen. Zeigen Sie, daß  [mm] \wurzel[k]{n} [/mm] entweder eine natürliche oder eine irrationale Zahl ist.

Hallihallo,

ich grübel schon ne ganze weile über dieser Aufgabe. Dass das so seien muss macht ja echt Sinn und ist gedanklich nachvollziehbar. Aber wie kann man das formal korrekt zeigen?



        
Bezug
Zahlentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 So 04.11.2007
Autor: leduart

Hallo
nimm an [mm] \wurzel[k]{n}=p/q [/mm]  p/q gekürzt.   führ das zum Widerspruch. (falls n¯ne [mm] p^k [/mm] und q=1)
Gruss leduart

Bezug
                
Bezug
Zahlentheorie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 So 04.11.2007
Autor: flachtrudeln

also sei [mm] \bruch{p}{q} [/mm] teilerfremd. und dann stellt man die gleichung [mm] \wurzel[k]{n} [/mm] = [mm] \bruch{p}{q} [/mm] auf. dann ist [mm] p^{k} [/mm] = n * [mm] q^{k}. [/mm] Also ist [mm] p^{k} [/mm] = n für q = 1 und damit eine natürliche Zahl oder wenn [mm] q\not=1 [/mm] sind p und q doch nicht teilerfremd und damit ein widerspruch oder wie muss das aussehen?

Wie zeigt man denn das p und q dann doch nicht teilerfremd sind?

Bezug
                        
Bezug
Zahlentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Mo 05.11.2007
Autor: angela.h.b.


> also sei [mm]\bruch{p}{q}[/mm] teilerfremd. und dann stellt man die
> gleichung [mm]\wurzel[k]{n}[/mm] = [mm]\bruch{p}{q}[/mm] auf. dann ist [mm]p^{k}[/mm]
> = n * [mm][mm] q^{k}. [/mm]

Hallo,

hieraus folgt doch, daß [mm] p^k [/mm] von q geteilt wird.

Wegen der Teilerfremdheit v. p und q gibt es [mm] x,y\in \IZ [/mm] mit   1=xp+yq.

Hiermit müßte man dann weiterkommen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de