www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Zahlentheorie Reihe
Zahlentheorie Reihe < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlentheorie Reihe: Frage
Status: (Frage) beantwortet Status 
Datum: 22:52 Do 05.05.2005
Autor: Bonnie

Hallo ich komme hier irgendwie nicht weiter...
bitte um eure Hilfe:
Die Aufgage lautet: Sei n  [mm] \in \IN, [/mm] n > 2 . Zeige, dass
[mm] \bruch{1}{2}+ \bruch{1}{3}+ [/mm] .......+ [mm] \bruch{1}{n} [/mm] keine ganze Zahl ist.
Ich hab es mit Induktion versucht , komme da aber leider nicht weit mit.
Danke schon mal im vorraus
Bonnie
Ich habe diese Frage in keinem andren Forum gestellt

        
Bezug
Zahlentheorie Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Fr 06.05.2005
Autor: FriedrichLaher

Hallo Bonnie

in "Elemente der Zahlentheorie" von I.M. Winogradow ( Lösungen zu Kapitel II )
wird das
wie folgt beantwortet: ( die Summe sei $S$ )

Es sei $k$ die größte Zahl mit $2 [mm] \le [/mm] n$ und $P$ das Produkt aller ungeraden Zahlen
[mm] $\le [/mm] n$ . Die Zahl [mm] $2^{k-1}*P*S$ [/mm] ist dann eine Summe, deren sämtliche Summanden,
außer [mm] $2^{k-1}*P*\frac{1}{2^k}$, [/mm] ganze Zahlen sind.

Gruß F.

Bezug
                
Bezug
Zahlentheorie Reihe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:57 Fr 06.05.2005
Autor: Bonnie

Danke erstmal für die schnelle Antwort.
Aber wiso betrachtet man dieses Produkt und was ist k´.
Ich kann diese Lösung leider nicht ganz nachvollziehen.
vielleicht kannst du die noch ergänzen ???
oder hat jemand anderes evtl eine andere Lösung.
vielen Dank Bonnie

Bezug
                        
Bezug
Zahlentheorie Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Fr 06.05.2005
Autor: Paulus

Hallo Bonnie

Bei Friedrich Lahers Antwort ist nirgends ein k' vorhanden, das ist lediglich ein Komma im Satz.

Dann ist noch ein kleiner Fehler vorhanden:

Es sollte natürlich nicht $2 [mm] \le [/mm] n$ heissen, sondern [mm] $2^k \le [/mm] n$

Mach das doch eifach mal mit einem konkreteen Beispiel, sagen wir mit $n=9$

Dann gibt es dieses:

[mm] $S=\bruch{1}{2}+\bruch{1}{3}+\bruch{1}{4}+\bruch{1}{5}+\bruch{1}{6}+\bruch{1}{7}+\bruch{1}{8}+\bruch{1}{9}$ [/mm]

$P=3*5*7*9$

$k=3$

Das gebildete Produkt ist also dieses:

$4* [mm] \, [/mm] 3*5*7*9* [mm] \,(\bruch{1}{2}+\bruch{1}{3}+\bruch{1}{4}+\bruch{1}{5}+\bruch{1}{6}+\bruch{1}{7}+\bruch{1}{8}+\bruch{1}{9})$ [/mm]

Wenn du jetzt das Produkt vor der Klammer hineinmultiplizierst, dann stellst du unschwer fest, dass du überall so weit kürzen kannst, dass eine ganze Zahl entsteht, ausser bei
[mm] $4*3*5*7*9*\bruch{1}{8}=\bruch{3*5*7*9}{2}$ [/mm]

Das ganze Produkt kann also nicht ganzzahlig sein! Weil aber alle Faktoren vor der Klammer ganzzahlig sind, muss diese Nichtganzzahligkeit wohl von der Summe in der Klammer herrühren! :-)

Ist es jetzt einigermassen verständlich?

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de