www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - Zeichnung der Punkte
Zeichnung der Punkte < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeichnung der Punkte: Anstoß?
Status: (Frage) beantwortet Status 
Datum: 14:29 Do 29.04.2010
Autor: f4b

Aufgabe
Zeichne in ein Koordinatensystem die Zahlen der Menge M ((-3-3,5i);(-1-1,5i),0-0,5i);(3+2,5i);(5+4,5i)
und berechne aus jeder Zahl aus M die Zahl 1/z*

Also, es handelt sich hierbei ja um eine komplexe Zahlenebene.
Die erst genannten Punkte zeichne ich einfach ein (z.B. -3-3,5i ist dann -3 auf der Realachse und -3,5i auf der Imaginärachse, richtig?)

Um nun jede Zahl 1/z* zu bestimmen, was muss ich beachten? Ändern sich die Vorzeichen?

Bei beiden Fällen enstehen wahrscheinlich mathematische Formen, wobei 1/z* dann die "Bildform" wäre, soweit ist mir das klar. Aber wie berechne ich diese ganzen Punkte?

Und kennt jem. ein Zeichenprogramm, mit dessen Hilfe man einen Eindruck gewinnen kann, wie diese Formen auszusehen haben?

Sommerlichen Gruß
f4b

        
Bezug
Zeichnung der Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Do 29.04.2010
Autor: abakus


> Zeichne in ein Koordinatensystem die Zahlen der Menge M
> ((-3-3,5i);(-1-1,5i),0-0,5i);(3+2,5i);(5+4,5i)
>  und berechne aus jeder Zahl aus M die Zahl 1/z*
>  Also, es handelt sich hierbei ja um eine komplexe
> Zahlenebene.
>  Die erst genannten Punkte zeichne ich einfach ein (z.B.
> -3-3,5i ist dann -3 auf der Realachse und -3,5i auf der
> Imaginärachse, richtig?)

Ja, du zeichnest den Punkt-3;-3,5)

>  
> Um nun jede Zahl 1/z* zu bestimmen, was muss ich beachten?
> Ändern sich die Vorzeichen?

BERECHNE einfach 1/z, so wie ihr es gelernt habt.
(Vermutlich erweitern mir der konjugiert komplexen Zahl? Oder habt ihr schon in die trigonometrische Form r(sin [mm] \phi [/mm] +i cos [mm] \phi) [/mm] umgewandelt und Betrag und Argument bearbeitet?)
Gruß Abakus

>
> Bei beiden Fällen enstehen wahrscheinlich mathematische
> Formen, wobei 1/z* dann die "Bildform" wäre, soweit ist
> mir das klar. Aber wie berechne ich diese ganzen Punkte?
>  
> Und kennt jem. ein Zeichenprogramm, mit dessen Hilfe man
> einen Eindruck gewinnen kann, wie diese Formen auszusehen
> haben?

Dazu brauchst du kein Zeichenprogramm. Das Bild jedes Punktes ist wieder ein Punkt.

>
> Sommerlichen Gruß
>  f4b


Bezug
                
Bezug
Zeichnung der Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Do 29.04.2010
Autor: f4b

"Vermutlich erweitern mir der konjugiert komplexen Zahl"

Genau das haben wir gemacht und ich kann diesen Zwischenschritt nicht ganz nachvollziehen. Könntest du mir evtl. ein schnelles Bsp nennen, das wäre zu nett

Bezug
                        
Bezug
Zeichnung der Punkte: Wikipedia
Status: (Antwort) fertig Status 
Datum: 16:17 Do 29.04.2010
Autor: informix

Hallo f4b,

> "Vermutlich erweitern mir der konjugiert komplexen Zahl"
>  
> Genau das haben wir gemacht und ich kann diesen
> Zwischenschritt nicht ganz nachvollziehen. Könntest du mir
> evtl. ein schnelles Bsp nennen, das wäre zu nett

Vielleicht hilft dir []dieser Link zu Wikipedia auf die Sprünge?

Gruß informix

Bezug
                                
Bezug
Zeichnung der Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Do 29.04.2010
Autor: f4b

demnach ändert sich also bei diesen aufgaben, durch das (z)* nur das vorzeichen des imaginärteils, ist das korrekt?

Bezug
                                        
Bezug
Zeichnung der Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Do 29.04.2010
Autor: fred97


> demnach ändert sich also bei diesen aufgaben, durch das
> (z)* nur das vorzeichen des imaginärteils, ist das
> korrekt?

Mit z=x+iy ist:


     [mm] \bruch{1}{z^{\*}}= \bruch{z}{z^{\*}*z}= \bruch{x+iy}{x^2+y^2} [/mm]

FRED

Bezug
                                                
Bezug
Zeichnung der Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Do 29.04.2010
Autor: f4b

im falle von -5-5,5i wären das also:

(-5-5,5i):(25+30,25)

das ergibt dann mit zähler erweitern usw. 5-1/2i , richtig?

desweiteren noch eine frage. all diese punkte bilden ja eine gerade, die nicht durch den urpsrung verläuft. nun soll ich die mathematische form beschreiben in der komplexen zahlenebene (wobei die form ja noch aus mehr als nur den mir angegebenen punkten besteht). wie habe ich mir das vorzustellen bzw. welche form kommt denn raus? etwa ein kreis - weil so gesehen alle geraden in der unendlichkeit ein kreis bilden - oder wie und mit welcher begründung?

Bezug
                                                        
Bezug
Zeichnung der Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Do 29.04.2010
Autor: abakus


> im falle von -5-5,5i wären das also:
>  
> (-5-5,5i):(25+30,25)
>
> das ergibt dann mit zähler erweitern usw. 5-1/2i ,
> richtig?

Selbstvertändlich nicht. 25+30,25 ist 55,25.
-5/55,25 ist nicht 5, und -5i/55,25 ist nicht -0,5i. Deine vorgeschlagene Lösung stimmt also weder im Real- noch im Imaginärteil.

>  
> desweiteren noch eine frage. all diese punkte bilden ja
> eine gerade, die nicht durch den urpsrung verläuft. nun
> soll ich die mathematische form beschreiben in der
> komplexen zahlenebene (wobei die form ja noch aus mehr als
> nur den mir angegebenen punkten besteht). wie habe ich mir
> das vorzustellen bzw. welche form kommt denn raus? etwa ein
> kreis - weil so gesehen alle geraden in der unendlichkeit
> ein kreis bilden - oder wie und mit welcher begründung?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de