www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Zeigen das Folge konvergiert
Zeigen das Folge konvergiert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen das Folge konvergiert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Do 04.12.2008
Autor: Cougar

Aufgabe
Wir definieren die Folge [mm] (a_n) [/mm] (n [mm] \in \IN_0) [/mm] durch [mm] a_0 [/mm] = 1 und [mm] a_n=\wurzel{1+a_n_-_1} [/mm] .    [mm] \forall [/mm] n >= 1

Zeigen Sie, dass die Folge konvergiert und bestimmen Sie den Grenzwert

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo

konvergieren bedeutet doch sich an einen Grenzwert nähern oder??

Aber wie soll ich hier zeigen das sie konvergiert vor allem wie soll ich den Grenzwert bestimmen??

        
Bezug
Zeigen das Folge konvergiert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Do 04.12.2008
Autor: angela.h.b.


> Wir definieren die Folge [mm](a_n)[/mm] (n [mm]\in \IN_0)[/mm] durch [mm]a_0[/mm] = 1
> und [mm]a_n=\wurzel{1+a_n_-_1}[/mm] .    [mm]\forall[/mm] n >= 1
>  
> Zeigen Sie, dass die Folge konvergiert und bestimmen Sie
> den Grenzwert

> konvergieren bedeutet doch sich an einen Grenzwert nähern
> oder??
>  

Hallo,

"konvergiert" bedeutet, daß die Folge einen Grenzwert hat.

> Aber wie soll ich hier zeigen das sie konvergiert vor allem
> wie soll ich den Grenzwert bestimmen??

Das zeigen der Konvergenz ist hier eher schwieriger als das bestimmen des Grenzwertes.

Zur Konvergenz: Glück hat man, wenn man zeigen kann, daß die Folge monoton und beschränkt ist, denn daraus folgt die Konvergenz.

Hast Du mal Folgenglieder ausgerechnet? Könnte es sein, daß das der Fall ist? Damit stünde dann ja der große Plan.


Zum Grenzwert: vorausgesetzt, die Folge hat einen Grenzwert a.

Diesen kannst Du dann mithilfe der Rekursion [mm] a_n=\wurzel{1+a_n_-_1} [/mm] ermitteln, indem Du auf beiden Seiten der gleichung den Grenzwert berechnest und dann nach a auflöst.


Gruß v. Angela


Bezug
                
Bezug
Zeigen das Folge konvergiert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 04.12.2008
Autor: Cougar


> Zur Konvergenz: Glück hat man, wenn man zeigen kann, daß
> die Folge monoton und beschränkt ist, denn daraus folgt die
> Konvergenz.

Das sie monoton ist leuchtet mir ein, da man weiß das die wurzel monoton Steigend ist. Aber wie fasst man das in einen gültigen beweis. Und ich weiß das sie beschränkt ist. Hab mal bis zu a_10 ausgerechnet und da sieht man das nicht viel größer wird als 1.618032323. Damit ist es ja beschränkt aber ich weiß auch nicht wie ich das in einen gültigen beweis fassedie Folge hat einen Grenzwert


> Diesen kannst Du dann mithilfe der Rekursion
> [mm]a_n=\wurzel{1+a_n_-_1}[/mm] ermitteln, indem Du auf beiden
> Seiten der gleichung den Grenzwert berechnest und dann nach
> a auflöst.

Also einen Grenzwert gibt es scheinbar da es ja beschränkt ist aber wie du das mit dem berechnen der Grenzwertes meinst hab ich nicht verstanden.

Bezug
                        
Bezug
Zeigen das Folge konvergiert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Do 04.12.2008
Autor: pelzig

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> > Zur Konvergenz: Glück hat man, wenn man zeigen kann, daß
> > die Folge monoton und beschränkt ist, denn daraus folgt die
> > Konvergenz.
>  
> Das sie monoton ist leuchtet mir ein, da man weiß das die
> wurzel monoton Steigend ist. Aber wie fasst man das in
> einen gültigen beweis. Und ich weiß das sie beschränkt ist.
> Hab mal bis zu a_10 ausgerechnet und da sieht man das nicht
> viel größer wird als 1.618032323.

Aha... vielleicht macht die Folge ja später noch komische Sachen?!?

> Damit ist es ja beschränkt aber ich weiß auch nicht wie ich das in einen
> gültigen beweis fasse.

Zeige z.B. durch vollständige Induktion $a_n<2$.  

> Also einen Grenzwert gibt es scheinbar da es ja beschränkt
> ist aber wie du das mit dem berechnen der Grenzwertes
> meinst hab ich nicht verstanden.

Man macht das so: Angenommen, es gibt einen Grenzwert $a$, dann folgt aus $a_{n+1}=\sqrt[1+a_n}$ zunächst $\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}\sqrt{1+a_n}$.
Es ist klar dass $\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n=a$ ist (da bei konvergenten Folgen jede Teilfolge gegen denselben Grenzwert konvergiert) und außerdem ist $\lim_{n\to\infty}\sqrt{1+a_n}=\sqrt{1+\lim_{n\to\infty} a_n}$ (Folgenstetigkeit!) und somit insgesamt $a=\sqrt{1+a}$. Diese Gleichung kannst du nach a auflösen und erhälst den Grenzwert.

Veriss nicht: diese Argumentation sagt nur "Falls die Folge konvergiert, dann muss der Grenzwert dies-und-das sein". Ob die Folge überhaupt konvergiert steht auf einem anderen Blatt.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de