www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Zeigen von Konvergenz
Zeigen von Konvergenz < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen von Konvergenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:34 Mo 14.11.2011
Autor: KaJaTa

Aufgabe
Bestimmen Sie folgende Grenzwerte mit Hilfe der Rechenregeln für Folgen.
Begründen Sie jeweils kurz, dass die Voraussetzungen für die Anwendung der Regeln erfüllt sind.

Wie zeige ich, dass eine Folge konvergent ist, damit ich die Rechenregeln anwenden kann.
Z.B. bei

[mm] \limes_{n\rightarrow\infty}=(1+n^{2})*(\bruch{1}{n^{4}}-\bruch{1}{n^{2}}) [/mm]

        
Bezug
Zeigen von Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mo 14.11.2011
Autor: schachuzipus

Hallo KaJaTa,


> Bestimmen Sie folgende Grenzwerte mit Hilfe der
> Rechenregeln für Folgen.
>  Begründen Sie jeweils kurz, dass die Voraussetzungen für
> die Anwendung der Regeln erfüllt sind.
>  Wie zeige ich, dass eine Folge konvergent ist, damit ich
> die Rechenregeln anwenden kann.
> Z.B. bei
>  
> [mm]\limes_{n\rightarrow\infty}=(1+n^{2})*(\bruch{1}{n^{4}}-\bruch{1}{n^{2}})[/mm]

Was soll das bedeuten?

Insbesondere das "=" ??

Das ergibt doch überhaupt keinen Sinn ...

Du meinst [mm]\lim\limits_{n\to\infty}\left[\left(1+n^2\right)\cdot{}\left(\frac{1}{n^4}-\frac{1}{n^2}\right)\right][/mm]

Nun, du weißt, dass das Produkt zweier konvergenter Folgen konvergent ist und der GW das Produkt der "Einzel"grenzwerte ist.

Hier ist "leider" die Folge [mm]\left(1+n^2\right)_{n\in\IN}[/mm] divergent, die andere konvergent, das hilft also nix.

Multipliziere die beiden Klammern miteinander, das ergibt:

[mm]\frac{1}{n^4}-\frac{1}{n^2}+\frac{1}{n^2}-1=\frac{1}{n^4}-1[/mm]

Was treibt das für [mm]n\to\infty[/mm]?

Welche Rechenregel für Grenzwerte nutzt du dabei?

Gruß

schachuzipus


>  


Bezug
                
Bezug
Zeigen von Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Mo 14.11.2011
Autor: KaJaTa

Danke für den Tipp. Das mit dem = war natürlich nur eine Unachtsamkeit.

Durch die Umformung sieht man halt, dass nun beide Folgenglieder konvergieren. Einmal gg 0 und 1. Und die Differenz beider Einzelgrenzwerte ist nunmal der Gesamtgrenzwert.
Hier -1

Dankeschön



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de