www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zentraler Grenzwertsatz
Zentraler Grenzwertsatz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentraler Grenzwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Do 13.01.2011
Autor: janisE

Aufgabe
Die Wahrscheinlichkeit eines Ereignisses A sei gleich p. Es werden n unabh. Versuche durchgeführt. X/n sei die relative Häufigkeit von A in dieser Versuchsreihe. Beantworten Sie folgenden Fragen mit der durch den ZGWS gegebenen Approximation der Binomialverteilung

a)
Sei p = 0.3 und n = 1800. Wie groß ist P (0.29 <= X/n <= 0.33)?
b)
Sei p = 0.375. Wie groß muss n sein, damit P (|X/n − p| <= 0.001) >= 0.995 ist?
c)
Sei p = 3/5 und n = 1400. Wie groß muss e gewählt werden, damit P (|X/n−p| < e) >= 0.99 ist?
d)
Sei nun n = 7600. F+r welche Werte von p wird P(|X/n|<0.01)>=0.95?


Hallo!

Irgendwie komme ich mit der Aufgabe nicht klar. Zum Verständnis: Der Zentrale Grenzwertsatz besagt soweit ich es verstanden habe, dass die Summe unabhängiger Zufallsvariablen näherungsweise normalverteilt ist. Richtig?

Doch wie rechne ich mit dieser Information die Aufgaben? Könnt ihr mir bitte helfen und den richtigen Weg aufzeigen?

Vielen Dank und noch einen schönen Abend!






        
Bezug
Zentraler Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Do 13.01.2011
Autor: Walde

Hi JanisE,

es werden ja n unabh. Versuche durchgeführt. Seien [mm] X_i=\begin{cases} 1, & \mbox{wenn A bei der i-ten Durchführung eingetreten ist} \\ 0, & \mbox{wenn nicht} \end{cases}, [/mm] i=1...n Zufallsvariable. Diese sind bernoulliverteilt mit [mm] P(X_i=1)=P(A)=p [/mm] mit  [mm] E(X_i)=p [/mm] und [mm] Var(X_i)=p(1-p). [/mm]

Einerseits ist ihre Summe [mm] X=X_1+\cdots+X_n [/mm] binomialverteilt mit Paramtern n und p und zählt, wie oft das Ereignis A bei n Durchführungen eingetreten ist.

Andererseits, gilt nach dem ZGWS für die Teilsumme [mm] $X_1+\cdots+X_n$ [/mm] einer Folge [mm] X_1,X_2,X_3,\cdots [/mm] von iid ZVen, mit [mm] \mu=E(X_i) [/mm] und [mm] \sigma=\wurzel{Var(X_i)}: [/mm]

[mm] P(\bruch{X_1+\cdots+X_n-n\mu}{\sigma\wurzel{n}}\le z)\approx\Phi(z) [/mm]

Und man kann Umformen, [mm] \bruch{X_1+\cdots X_n-n\mu}{\sigma\wurzel{n}}=\bruch{X-n\mu}{\sigma\wurzel{n}}=\wurzel{n}\bruch{\bruch{X}{n}-\mu}{\sigma}, [/mm] wenn man im Zähler ein n ausklammert und [mm] \wurzel{n} [/mm] kürzt.

Was heisst das nun für die Aufgabe? Wenn du etwas in der Form [mm] $P(\bruch{X}{n}\le [/mm] k)$ hast, musst du es auf die Form von [mm] P(\wurzel{n}\bruch{\bruch{X}{n}-\mu}{\sigma}\le \wurzel{n}\bruch{k-\mu}{\sigma}) [/mm] bringen, dann kannst du die W'keit mit der Std.normalvert. ausrechnen.

LG walde


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de