www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Zentrum von GLK(V)
Zentrum von GLK(V) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentrum von GLK(V): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Di 13.12.2005
Autor: Willi

Aufgabe
Es sei V ein endlich-dimensionaler VEktorraum über einem Körper K. Ziel dieser Aufgabe ist es, das Zentrum [mm] Zent(GL_{k}(V)):= [/mm] {F [mm] \in GL_{k}(V): [/mm] F [mm] \circ [/mm] G= G [mm] \circ [/mm] F} der Gruppe [mm] GL_{k}(V) [/mm] zu bestimmen. Dazu sei F [mm] \in Zent(GL_{k}(V)) [/mm] beliebig. Dann zeige man:

(a) Für jedes v [mm] \in [/mm] V ist die Menge {v, F(v)} linear abhängig.
[Tipp: Unter der Annahme, dass {v, F(v)} linear unabhängig wäre, zeige man, das es ein G [mm] \in GL_{k}(V) [/mm] mit G(v)=v und G(F(v))=v+F(v) gäbe. Nach Vorraussetzung gilt dann G(F(v))=F(G(v)); diese Gleichung führe man auf einen Widerspruch.]

(b) Es existiert [mm] \lambda \in [/mm] K\ {0} mit F= [mm] \lambda id_{v}. [/mm]
[Tipp: Man beweise die folgenden Behauptungen: Wegen (a) gibt es zu jedem v [mm] \in [/mm] V \ {0} genau (!) ein [mm] \lambda_{v} \in [/mm] K \ {0} mit [mm] F(v)=\lambda_{v} \*v. [/mm] Wäre nun [mm] \lambda_{v} \not= \lambda_{w} [/mm] für gewisse v,w [mm] \in [/mm] V \ {0}, so sind v und w jedenfalls linear unabhängig.
Außerdem gilt dann
[mm] \lambda_{v+w}\*(v+w) [/mm] = F(v+w)=F(v) + F(w)= [mm] \lambda_{v}\*v [/mm] + [mm] \lambda_{w}\*w, [/mm] woraus ein Widerspruch zur ANnahme folgt. Daruas folgt (b).]

Hieraus folgere man [mm] Zent(GL_{k}(V))= \{\lambda id_{v}| \lambda \in K \ {0}}. [/mm]

Hey Leute,
kann man mir vielleicht irgendwie bei dieser schreklichen Aufgabe helfen?
Habe leider (trotz Tipp) keine Ahnung wie ich das beweisen soll.
Wie soll ich z.B. diese lineare abhängigkeit beweisen? Hier bei dieser Aufgabe krieg ich das irgendwie nicht hin.
Bin dankbar für alle Hinweise/Tipps/Antworten.
DANKE.

        
Bezug
Zentrum von GLK(V): Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mi 14.12.2005
Autor: mathiash

Hallo Willi,

zum ersten Teil:

wenn v und F(v) lin. unabh. w"aren, so koennte man sie erweitern zu einer
Basis   v, F(v), [mm] v_3,.... [/mm] von V   "uber K. Dann kann man zB

G(v)=v , G(F(v))= v+F(v), [mm] G(v_j)=v_j [/mm] für [mm] j\geq [/mm] 3 setzen, dies definiert eine lineare Abb.

[mm] G:V\to [/mm] V, und da v und F(v) laut Ann. lin. unabh. sind, ist auch [mm] G\in GL_K(V). [/mm]

Zum zweiten Teil:

Wir wissen also, dass v,F(v) lin. abh. sind. Aber das heisst doch gerade, dass es
[mm] \lambda_v [/mm] gibt mit [mm] F(v)=\lambda \cdot [/mm] v.

Waehle wieder eine Basis von V, zB [mm] e_i,i=1,2,..... [/mm]

Dann ist -weil F ja insb. linear ist - fuer alle i und alle [mm] v=a\cdot e_i, a\in [/mm] K

[mm] \lambda_v=\lambda_{e_i} [/mm]

Nun muss man nur noch zeigen, dass fuer [mm] i\neq [/mm] j auch [mm] \lambda_i=\lambda_j [/mm] gilt,
aber der Beweis steht doch dort schon.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de