www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Zerfällungskörper
Zerfällungskörper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Sa 18.02.2006
Autor: cloe

Aufgabe
Gegeben sei das Polynom [mm] x^4+1 \in \IQ[x]. [/mm] Bestimme den dazugehörigen Zerfällungskörper

Hallo,

mein Ansatz:

das Polynom hat neben den Nullstellen [mm] \pm \wurzel[4]{1} [/mm] auch komplexe Nullstellen, die nicht in [mm] \IQ [/mm] enthalten sind.
Ich muss einen Körper bestimmen, der auch die komplexen Nullstellen enthält.
Leider weiß ich ab hier nun nicht merh weiter.

Kann mir da vielleicht jemand weiterhelfen.

Gruß cloe

        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Sa 18.02.2006
Autor: mathmetzsch

Hallo,

denke dir mal die Gauß'sche Zahlenebene. Dann siehst du die vier Nullstellen. Diese sind [mm] \bruch{\pm 1\pm i}{\wurzel{2}}. [/mm]

Den Zerfällungskörper erhälst du durch Adjunktion aller Nullstellen. Der kleinste körper ist anscheinend [mm] \IQ(i,\wurzel{2}). [/mm]

Ach so, es wäre auch noch zu zeigen, dass das Polynom irreduzibel ist. Das ist aber einfach. Setze x=x+1 und wende Eisenstein an!

Viele Grüße
Daniel


Bezug
                
Bezug
Zerfällungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Sa 18.02.2006
Autor: cloe

Und wie würde es dann beim Polynom [mm] x^3+2\in\IQ [/mm] aussehen?

Das Polynom ist irreduzibel. (Zunächst substituieren mit x+1 und dann Eisenstein mit p=3)

Bezug
                        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Sa 18.02.2006
Autor: mathmetzsch

Hallo,

nö das geht einfacher. Wähle p=2 und verwende Eisenstein. Dann geht die Argumentation analog. Welche Nullstellen gibt es denn?

Auf jeden Fall [mm] \wurzel[3]{-2}. [/mm] Dann noch irgendwas mit i...!

Der Zerfällungskörper ist dann sicherlich [mm] \IQ({\wurzel[3]{-2},i}) [/mm] oder?

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de