www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Zerfällungskörper
Zerfällungskörper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper: Aufgabe1
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:14 Do 23.10.2008
Autor: tugba

Aufgabe
Wir betrachten die irrationalen Zahlen [mm] \alpha=\wurzel[3]{3} [/mm] und [mm] \beta=\wurzel{5}, [/mm] sowie die zugehörigen Körpererweiterungen
[mm] \IQ\subset\IQ(\alpha)\subset\IQ(\alpha,\beta), [/mm]
[mm] \IQ\subset\IQ(\beta)\subset\IQ(\alpha,\beta), [/mm]
Dies sind alles Unterkörper von [mm] \IR. [/mm]

Wie zerfällt [mm] f(x):=x^{6}-15x^{4}-6^{3}+75x^{2}-90x-116 [/mm] über dem Körper [mm] \IQ(\beta)? [/mm]

Hallo,

Es wäre nett, wenn mir jemand bei dieser Aufgabe helfen würde. Mein Problem bei dieser Aufgabe ist, ich weis nicht was wirklich von mir verlangt wird. Soll ich hier den Zefällungskörper bestimmen, wenn ja wie kann ich das machen.

        
Bezug
Zerfällungskörper: einiges dazu
Status: (Antwort) fertig Status 
Datum: 08:07 Fr 24.10.2008
Autor: statler

Hallo nach Nienburg!

> Wir betrachten die irrationalen Zahlen [mm]\alpha=\wurzel[3]{3}[/mm]
> und [mm]\beta=\wurzel{5},[/mm] sowie die zugehörigen
> Körpererweiterungen
>  [mm]\IQ\subset\IQ(\alpha)\subset\IQ(\alpha,\beta),[/mm]
>  [mm]\IQ\subset\IQ(\beta)\subset\IQ(\alpha,\beta),[/mm]
>  Dies sind alles Unterkörper von [mm]\IR.[/mm]
>  
> Wie zerfällt [mm]f(x):=x^{6}-15x^{4}-6x^{3}+75x^{2}-90x-116[/mm] über
> dem Körper [mm]\IQ(\beta)?[/mm]

> Es wäre nett, wenn mir jemand bei dieser Aufgabe helfen
> würde. Mein Problem bei dieser Aufgabe ist, ich weiss nicht
> was wirklich von mir verlangt wird. Soll ich hier den
> Zefällungskörper bestimmen, wenn ja wie kann ich das
> machen.

Was du machen sollst, steht doch da: Du sollst dieses Polynom über [mm]\IQ(\beta)[/mm] zerfällen. Also sollst du dieses Polynom als Produkt von irreduziblen Polynomen mit Koeffizienten in [mm]\IQ(\beta)[/mm] darstellen. Im günstigsten Fall zerfällt das in Linearfaktoren, dann hättest du den Zerfällungskörper auch gleich gefunden. Dann wäre allerdings das Polynom selbst nicht irreduzibel (über [mm] \IQ). [/mm] Ist es das, ich weiß es nicht.

Nehmen wir mal an, daß es so ist. Dann wäre eine Nullstelle von f vom Grad 6 über [mm] \IQ.[/mm]  [mm]\IQ(\beta)[/mm] ist vom Grad 2. Was könnte man da so bzgl. der Zerlegung vermuten?

Gruß von der Elbe an die Weser
Dieter

PS: Ich war auf der ASS.

Bezug
                
Bezug
Zerfällungskörper: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:08 So 26.10.2008
Autor: stinkestern

Hallo tugba, hallo statler,

ich habe allerdings als Minimalpolynom [mm]f(x)=x^6-15 x^4+4 x^3 + 225x^2+60x+4[/mm] für [mm]\wurzel[3]{3}+ \wurzel{5}[/mm]. Ich kann ja mal aufschreiben, wie ich dahin gekommen bin, vielleicht findet ihr ja einen Fehler:
[mm]\wurzel[3]{3}+ \wurzel{5}= x[/mm]
[mm]3=(x- \wurzel{5})^3[/mm]
[mm]3=x^3-3x^2 \wurzel{5}+15x+5[/mm]
[mm]0=x^3-3x^2 \wurzel{5} +15x+2[/mm]
[mm]3\wurzel{5}x^2=(x^3+15x+2)^2[/mm]
[mm]0=x^6-15x^4+4x^3+25x^2+60x+4[/mm]

> Dann wäre eine Nullstelle
> von f vom Grad 6 über [mm]\IQ.[/mm]  [mm]\IQ(\beta)[/mm] ist vom Grad
> 2. Was
> könnte man da so bzgl. der Zerlegung vermuten?
>  

Dazu habe ich überlegt, dass das Polynom entweder je in einen Faktor 3., 2. und 1. Grades zerfällt oder in ein Polynom3. Grades und drei Linearfaktoren. Aber wie bestimmt man diese Faktoren? Da habe ich echt keine Idee. Vielleicht könnt ihr mir ja auf die Sprünge helfen.

Liebe Grüße
stinkestern

Bezug
                        
Bezug
Zerfällungskörper: korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 So 26.10.2008
Autor: tugba

Hallo stinkestern ,
>  
> ich habe allerdings als Minimalpolynom [mm]f(x)=x^6-15 x^4+4 x^3 + 225x^2+60x+4[/mm]
> für [mm]\wurzel[3]{3}+ \wurzel{5}[/mm]. Ich kann ja mal
> aufschreiben, wie ich dahin gekommen bin, vielleicht findet
> ihr ja einen Fehler:
>  [mm]\wurzel[3]{3}+ \wurzel{5}= x[/mm]
>  [mm]3=(x- \wurzel{5})^3[/mm]
>  
> [mm]3=x^3-3x^2 \wurzel{5}+15x+5[/mm]
>  [mm]0=x^3-3x^2 \wurzel{5} +15x+2[/mm]
>  
> [mm]3\wurzel{5}x^2=(x^3+15x+2)^2[/mm]
>  [mm]0=x^6-15x^4+4x^3+25x^2+60x+4[/mm]
>  

Leider hast du ein Rechenfehler bei deiner Lösungsweg. Obwohl ich die Aufgabe anders gelöst habe, sollte bei deiner Lösungsweg auch das gleiche minimalpolynom rauskommen:
[mm]\wurzel[3]{3}+ \wurzel{5}= x[/mm]
[mm]3=(x- \wurzel{5})^3[/mm]
[mm] 3=x^{3}-3x^{2}\wurzel{5}+15x-5\wurzel{5} [/mm]
[mm] 0=x^{3}-3x^{2}\wurzel{5}+15x-5\wurzel{5}-3 [/mm]
[mm] x^{3}+15x-3=3x^{2}\wurzel{5}+5\wurzel{5} [/mm]     | [mm] (...)^{2} [/mm]
[mm] x^{6}+30x{4}-6x^{3}+225x^{2}-90x+9=45x^{4}+150x^{2}+125 [/mm]
[mm] 0=x^{6}-15x^{4}-6x^{3}+75x^{2}-90x-116 [/mm]

PS: ich vermute du besucht auch die Vorlesung von Prof. Wewers:-)

Liebe Grüße,

tugba


Bezug
                
Bezug
Zerfällungskörper: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:52 So 26.10.2008
Autor: tugba

Hallo statler,

Erstmal danke für deine Hilfe, aber ich kann die Aufgabe trotzdem nicht lösen.
Mir ist nicht klar wie ich die Aufgabe lösen könnte.



Bezug
                        
Bezug
Zerfällungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 02:36 Mo 27.10.2008
Autor: tayfun

[mm] f=(x^3+3x^2\wurzel{5}+15x-3+5\wurzel{5})(x^3-3x^2\wurzel{5}+15x-3-5\wurzel{5}) [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de