www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Zerfällungskörper über F5
Zerfällungskörper über F5 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskörper über F5: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:06 Do 12.06.2008
Autor: Jenny85

Hallo!
Ich habe folgende Aufgabe! Ich soll die Galoisgruppe von [mm] X^{4}+2 \in \IF_{5} [/mm] bestimmen! Ich weiß dass ich dazu zunächst den Zerfällungskörper des Polynoms bestimmen muss. Ich habe die Nullstellen des Polynoms über [mm] \IC [/mm] zunächst bestimmt: [mm] X1=\bruch{1}{\wurzel[4]{2}}+\bruch{1}{\wurzel[4]{2}}i [/mm]
[mm] X2=-\bruch{1}{\wurzel[4]{2}}+\bruch{1}{\wurzel[4]{2}}i [/mm]
[mm] X3=\bruch{1}{\wurzel[4]{2}}- \bruch{1}{\wurzel[4]{2}}i [/mm]
X4=- [mm] \bruch{1}{\wurzel[4]{2}} [/mm] - [mm] \bruch{1}{\wurzel[4]{2}}i [/mm]
Ich weiß jetzt jedoch nicht wie ich den minimalen Zerfällungskörper über [mm] \IF_{5} [/mm] aufstellen soll!
Ich wäre sehr dankbar, wenn mir jemand weiter helfen könnte
Liebe Grüße
Jenny

        
Bezug
Zerfällungskörper über F5: Antwort
Status: (Antwort) fertig Status 
Datum: 07:29 Fr 13.06.2008
Autor: statler

Guten Morgen Jennifer!

>  Ich habe folgende Aufgabe! Ich soll die Galoisgruppe von
> [mm]X^{4}+2 \in \IF_{5}[/mm] bestimmen! Ich weiß dass ich dazu
> zunächst den Zerfällungskörper des Polynoms bestimmen muss.
> Ich habe die Nullstellen des Polynoms über [mm]\IC[/mm] zunächst
> bestimmt:
> [mm]X1=\bruch{1}{\wurzel[4]{2}}+\bruch{1}{\wurzel[4]{2}}i[/mm]
>  [mm]X2=-\bruch{1}{\wurzel[4]{2}}+\bruch{1}{\wurzel[4]{2}}i[/mm]
>  [mm]X3=\bruch{1}{\wurzel[4]{2}}- \bruch{1}{\wurzel[4]{2}}i[/mm]
>  
> X4=- [mm]\bruch{1}{\wurzel[4]{2}}[/mm] - [mm]\bruch{1}{\wurzel[4]{2}}i[/mm]
>  Ich weiß jetzt jedoch nicht wie ich den minimalen
> Zerfällungskörper über [mm]\IF_{5}[/mm] aufstellen soll!

Die Nullstellen des Polynoms in [mm] \IC [/mm] helfen einem dabei nicht wirklich. Der Zerfällungskörper ist jedenfalls eine endliche  Erweiterung von F5 und somit selbst ein endlicher Körper. Die Struktur der endlichen Körper hat man komplett im Griff, das gehört in jede Algebra-Vorlesung und in jedes Algebra-Buch. Von daher denke ich, daß du auch davon gehört hast.

Also müssen wir nur noch klären, welchen Grad der Zerfällungskörper hat. Das Polynom hat keine Nullstelle in F5, also ist es irreduzibel oder es zerfällt in 2 quadratische Polynome.

Ich denke, du solltest jetzt erstmal untersuchen, welcher Fall eintritt.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de