www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zerfällungskp. von Polynomen
Zerfällungskp. von Polynomen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfällungskp. von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Do 03.03.2011
Autor: Lippel

Aufgabe
Bestimmen Sie einen Zerfällungskörper L der Familie [mm] $\{X^4+1, X^5+2\}$ [/mm] über [mm] $\IQ$ [/mm] sowie den Grad [mm] $[L:\IQ]$. [/mm]

Hallo,

bin mir etwas unsicher bei meiner Lösung der Aufgabe:
Die Nullstellen von [mm] $X^4+1$ [/mm] sind: [mm] $e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}}$ [/mm]
Die Nullstellen von [mm] $x^5+2$ [/mm] sind: [mm] $\sqrt[5]{2}e^{i\frac{\pi}{5}}, \sqrt[5]{2}e^{i\frac{3\pi}{5}}, -\sqrt[5]{2}, \sqrt[5]{2}e^{i\frac{7\pi}{5}}, \sqrt[5]{2}e^{i\frac{9\pi}{5}}$. [/mm]

Es liegt [mm] $\frac{e^{i\frac{\pi}{4}}}{e^{i\frac{\pi}{5}}} [/mm] = [mm] e^{i\frac{\pi}{20}}$ [/mm] in L.
Der Zerfällungskörper ist also [mm] $L=\IQ(\sqrt[5]{2},e^{i\frac{\pi}{20}}) [/mm] = [mm] \IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}})$, [/mm] denn darin liegen alle Nullstellen der zwei Polynome und die Erweiterung [mm] $L/\IQ$ [/mm] wird von den Nullstellen erzeugt.

Per Reduktion der Koeffizienten modulo 3 sieht man, dass [mm] $X^4+1$ [/mm] irreduzibel ist über [mm] $\IQ$, [/mm] damit ist [mm] $[\IQ(e^{i\frac{\pi}{4}}):\IQ]=4$, [/mm] wobei [mm] $\IQ(e^{i\frac{\pi}{4}})$ [/mm] ein Zerfällungskörper von [mm] $X^4+1$. [/mm]
Bleibt die Frage, ob [mm] $X^5+2$ [/mm] irreduzibel über [mm] $\IQ(e^{i\frac{\pi}{4}})$ [/mm] ist. Ich denke ja, denn die Nullstellen des Polynoms liegen nicht in [mm] $\IQ(e^{i\frac{\pi}{4}})$. [/mm] Damit ist also [mm] $[L:\IQ]=20$. [/mm] Stimmt das so?

Lg Lippel

        
Bezug
Zerfällungskp. von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mo 07.03.2011
Autor: felixf

Moin!

> Bestimmen Sie einen Zerfällungskörper L der Familie
> [mm]\{X^4+1, X^5+2\}[/mm] über [mm]\IQ[/mm] sowie den Grad [mm][L:\IQ][/mm].
>  Hallo,
>  
> bin mir etwas unsicher bei meiner Lösung der Aufgabe:
>  Die Nullstellen von [mm]X^4+1[/mm] sind: [mm]e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}}[/mm]
>  
> Die Nullstellen von [mm]x^5+2[/mm] sind:
> [mm]\sqrt[5]{2}e^{i\frac{\pi}{5}}, \sqrt[5]{2}e^{i\frac{3\pi}{5}}, -\sqrt[5]{2}, \sqrt[5]{2}e^{i\frac{7\pi}{5}}, \sqrt[5]{2}e^{i\frac{9\pi}{5}}[/mm].
>  
> Es liegt [mm]\frac{e^{i\frac{\pi}{4}}}{e^{i\frac{\pi}{5}}} = e^{i\frac{\pi}{20}}[/mm]
> in L.
>  Der Zerfällungskörper ist also
> [mm]L=\IQ(\sqrt[5]{2},e^{i\frac{\pi}{20}}) = \IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}})[/mm],
> denn darin liegen alle Nullstellen der zwei Polynome und
> die Erweiterung [mm]L/\IQ[/mm] wird von den Nullstellen erzeugt.

[ok]

Und damit hast du jetzt fast die Aufgabe geloest:

* es ist [mm] $[\IQ(e^{i \pi/20}) [/mm] : [mm] \IQ] [/mm] = [mm] \varphi(40) [/mm] = 16$, da [mm] $e^{i \pi/20}$ [/mm] eine 40te primitive Einheitswurzel ist;
* es ist [mm] $[\IQ(\sqrt[5]{2}) [/mm] : [mm] \IQ] [/mm] = 5$, da [mm] $X^5 [/mm] - 2$ irreduzibel ueber [mm] $\IQ$ [/mm] ist.

Jetzt ist [mm] $[\IQ(\sqrt[5]{2}, e^{i \pi/20}) [/mm] : [mm] \IQ] \le [/mm] 16 [mm] \cdot [/mm] 5$, und wegen dem Gradsatz durch 16 sowie 5 teilbar. Da $ggT(16, 5) = 1$ ist, folgt also dass der Grad gleich $16 [mm] \cdot [/mm] 5$ ist.

> Per Reduktion der Koeffizienten modulo 3 sieht man, dass
> [mm]X^4+1[/mm] irreduzibel ist über [mm]\IQ[/mm], damit ist
> [mm][\IQ(e^{i\frac{\pi}{4}}):\IQ]=4[/mm], wobei
> [mm]\IQ(e^{i\frac{\pi}{4}})[/mm] ein Zerfällungskörper von [mm]X^4+1[/mm].

[ok]

>  Bleibt die Frage, ob [mm]X^5+2[/mm] irreduzibel über
> [mm]\IQ(e^{i\frac{\pi}{4}})[/mm] ist. Ich denke ja, denn die
> Nullstellen des Polynoms liegen nicht in
> [mm]\IQ(e^{i\frac{\pi}{4}})[/mm].

Da der Grad $> 3$ ist, reicht das als Begruendung nicht aus.

Aber das brauchst du auch gar nicht so zu bestimmen, ich hab dir oben hingeschrieben wie es viel einfacher geht :-)

> Damit ist also [mm][L:\IQ]=20[/mm]. Stimmt
> das so?

Nein, 20 ist ein Teiler von $16 [mm] \cdot [/mm] 5$, aber eben nicht gleich.

LG Felix


Bezug
                
Bezug
Zerfällungskp. von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Mo 07.03.2011
Autor: Lippel

Hallo Felix, vielen Dank für deine ausführliche Antwort!

> Und damit hast du jetzt fast die Aufgabe geloest:
>  
> * es ist [mm][\IQ(e^{i \pi/20}) : \IQ] = \varphi(40) = 16[/mm], da
> [mm]e^{i \pi/20}[/mm] eine 40te primitive Einheitswurzel ist;
>   * es ist [mm][\IQ(\sqrt[5]{2}) : \IQ] = 5[/mm], da [mm]X^5 - 2[/mm]
> irreduzibel ueber [mm]\IQ[/mm] ist.
>  
> Jetzt ist [mm][\IQ(\sqrt[5]{2}, e^{i \pi/20}) : \IQ] \le 16 \cdot 5[/mm],
> und wegen dem Gradsatz durch 16 sowie 5 teilbar. Da [mm]ggT(16, 5) = 1[/mm]
> ist, folgt also dass der Grad gleich [mm]16 \cdot 5[/mm] ist.

Ok, das verstehe ich. Aber weiter unten besthet noch eine Umklarheit.
  

> > Per Reduktion der Koeffizienten modulo 3 sieht man, dass
> > [mm]X^4+1[/mm] irreduzibel ist über [mm]\IQ[/mm], damit ist
> > [mm][\IQ(e^{i\frac{\pi}{4}}):\IQ]=4[/mm], wobei
> > [mm]\IQ(e^{i\frac{\pi}{4}})[/mm] ein Zerfällungskörper von [mm]X^4+1[/mm].
>  
> [ok]
>  
> >  Bleibt die Frage, ob [mm]X^5+2[/mm] irreduzibel über

> > [mm]\IQ(e^{i\frac{\pi}{4}})[/mm] ist. Ich denke ja, denn die
> > Nullstellen des Polynoms liegen nicht in
> > [mm]\IQ(e^{i\frac{\pi}{4}})[/mm].
>  
> Da der Grad [mm]> 3[/mm] ist, reicht das als Begruendung nicht aus.

Ok, folgender Gedanke muss falsch sein, sonst würde er der Lösung von oben widersprechen, ich sehe aber leider den Fehler nicht:
Es gilt doch [mm] $[L:\IQ]=[\IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}}):\IQ(e^{i\frac{\pi}{4}})][\IQ(e^{i\frac{\pi}{4}}):\IQ]$. [/mm]
Es ist [mm] $[\IQ(e^{i\frac{\pi}{4}}):\IQ]=4$ [/mm] und [mm] $X^5+2 \in \IQ(e^{i\frac{\pi}{4}})[X]$ [/mm] annuliert [mm] $\sqrt[5]{2}e^{i\frac{\pi}{5}}$. [/mm]
Damit gilt doch dann: [mm] $Mipo_{\IQ(e^{i\frac{\pi}{4}})}(\sqrt[5]{2}e^{i\frac{\pi}{5}}) \:|\: X^5+2$ [/mm] und damit $ [mm] [\IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}}):\IQ(e^{i\frac{\pi}{4}})] \leq [/mm] 5$ und somit [mm] $[L:\IQ] \leq [/mm] 20$.

LG Lippel

Bezug
                        
Bezug
Zerfällungskp. von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Mo 07.03.2011
Autor: felixf

Moin!

> > > Per Reduktion der Koeffizienten modulo 3 sieht man, dass
> > > [mm]X^4+1[/mm] irreduzibel ist über [mm]\IQ[/mm], damit ist
> > > [mm][\IQ(e^{i\frac{\pi}{4}}):\IQ]=4[/mm], wobei
> > > [mm]\IQ(e^{i\frac{\pi}{4}})[/mm] ein Zerfällungskörper von [mm]X^4+1[/mm].
>  >  
> > [ok]
>  >  
> > >  Bleibt die Frage, ob [mm]X^5+2[/mm] irreduzibel über

> > > [mm]\IQ(e^{i\frac{\pi}{4}})[/mm] ist. Ich denke ja, denn die
> > > Nullstellen des Polynoms liegen nicht in
> > > [mm]\IQ(e^{i\frac{\pi}{4}})[/mm].
>  >  
> > Da der Grad [mm]> 3[/mm] ist, reicht das als Begruendung nicht aus.
>  
> Ok, folgender Gedanke muss falsch sein, sonst würde er der
> Lösung von oben widersprechen, ich sehe aber leider den
> Fehler nicht:
>  Es gilt doch [mm][L:\IQ]=[\IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}}):\IQ(e^{i\frac{\pi}{4}})][\IQ(e^{i\frac{\pi}{4}}):\IQ][/mm].

Beachte, dass [mm] $\IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}})$ [/mm] eine echte Teilmenge von $L$ ist! Es ist $L = [mm] \IQ(\sqrt[5]{2}, e^{i \frac{\pi}{5}}, e^{i \frac{\pi}{4}})$. [/mm]

Wenn du das mit beruecksichtigst, passt es besser.

LG Felix


Bezug
                                
Bezug
Zerfällungskp. von Polynomen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Mo 07.03.2011
Autor: Lippel

Hallo!

> Beachte, dass [mm]\IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}})[/mm]
> eine echte Teilmenge von [mm]L[/mm] ist! Es ist [mm]L = \IQ(\sqrt[5]{2}, e^{i \frac{\pi}{5}}, e^{i \frac{\pi}{4}})[/mm].

Ok, damit wird einiges klar. Ich hatte weiter oben geschrieben: $ [mm] L=\IQ(\sqrt[5]{2},e^{i\frac{\pi}{20}}) [/mm] = [mm] \IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}}) [/mm] $, was natürlich falsch ist (du hattest vermutlich das fehlende Komma übersehen). Auf jeden Fall enthält [mm] $\IQ(\sqrt[5]{2}e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}})$ [/mm] ja gar nicht alle Nullstellen von [mm] $X^5+2$, [/mm] kann also nicht der gesuchte Zerfällungskp. sein, sondern es muss [mm] $L=\IQ(\sqrt[5]{2},e^{i\frac{\pi}{20}}) [/mm] = [mm] \IQ(\sqrt[5]{2},e^{i\frac{\pi}{5}}, e^{i\frac{\pi}{4}}) [/mm] $ heißen und damit erübrigt sich auch meine Einwand.

Danke für deine Hilfe, lg Lippel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de