www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Zerlegung einer Norm
Zerlegung einer Norm < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung einer Norm: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:01 Mo 05.12.2011
Autor: rainman_do

Aufgabe
Wir betrachten im [mm] $\IR^3$ [/mm] die durch [mm] $b_A(x,y):=x^tAy$ [/mm] definierte Bilinearform mit folgender Matrix
[mm] \pmat{ 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2} [/mm]
a) Zeige, dass [mm] $b_A$ [/mm] ein Skalarprodukt ist
b) Überführe den Ausdruck [mm] $||x||^2_A=b_A(x,x)$ [/mm] in eine Summe von 3 Termen
c) Finde im [mm] $IZ^3$ [/mm] mit dem Standardskalarprodukt drei Vektoren, deren Grammatrix gleich $A$ ist.
[mm] $a_i(x_i+... \cdots x_3)^2, [/mm] i=1,2,3$
und bestimme hiermit alle [mm] $x\in \IZ^3$ [/mm] mit [mm] $||x||_A^2\leq [/mm] 4$

Hallo Zusammen, kurze Frage zu Aufgabe b) (Teil a ist klar):

Ich hab jetzt einfach mal ganz blöd den Ausdruck $x^tAx$ ausgerechnet und dadurch erhält man ja die Norm bzgl. $A$ und die ist eine Summe aus drei Teilen:
[mm] $2x_1^2+2x_1x_2+2x_2^2+2x_2x_3+2x_3^2$ [/mm]
Wie presse ich denn das jetzt in die gewünschte Form? Schon etwa seltsam finde ich....

Zu c) Also ich weiß schon was die Gram-Matrix ist und ich weiß auch, wie ich zu einer gegeben Bilinearform eine Gram-Matrix bestimme (abbilden der Basisvektoren usw.) aber die Gram-Matrix von 3 Vektoren??

Wäre echt super, wenn jemand Rat wüsste, ich bin grad echt am verzweifeln... Danke schon mal im Voraus!

        
Bezug
Zerlegung einer Norm: 3 Summanden und c)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 Mo 05.12.2011
Autor: wieschoo

ich kann vielleicht sehr wenig beitragen

Falls nur 3 Summanden gesucht sind, dann kannst du beliebige Summanden nehmen. Nimm doch

                 [mm]x_1(2x_1+x_2)+x_2(x_1+2x_2+x_3)+x_3(x_2+2x_3)[/mm]

c) Seien die 3 Vektoren [mm] $a_1,a_2,a_3\in\IZ^3$. [/mm] Dann suchst du [mm] $a_1,a_2,a_3$ [/mm] so, dass

                 [mm]\pmat{ 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2} =\pmat{ \langle a_1,a_1 \rangle & \langle a_1,a_2 \rangle & \langle a_1,a_3 \rangle \\ \langle a_2,a_1 \rangle & \langle a_2,a_2 \rangle & \langle a_2,a_3 \rangle \\ \langle a_3,a_1 \rangle & \langle a_3,a_2 \rangle & \langle a_3,a_3 \rangle} [/mm]

gilt.



Bezug
                
Bezug
Zerlegung einer Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Mo 05.12.2011
Autor: rainman_do

Vielen Dank erstmal für die Antwort. Es war ja nach 3 Summanden gefragt, die jeweils irgendwelche quadrate sind...naja ich hab dann im grunde nur die norm von x ausgerechnet und dann per quadratischer ergänzung solange umgeformt bis ich 3 summanden hatte, die jeweils quadrate waren....mal schauen ob das richtig ist so... das mit der gram-matrix hatte ich auch so gemacht, ich hab es erst falsch verstanden und dachte, es müsse zusätzlich noch die norm bzgl. A kleiner-gleich 4 sein, so wie in der b) und war mir da nicht so ganz sicher...

Nochmal vielen Dank.

Bezug
                        
Bezug
Zerlegung einer Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Mo 05.12.2011
Autor: felixf

Moin!

> Vielen Dank erstmal für die Antwort. Es war ja nach 3
> Summanden gefragt, die jeweils irgendwelche quadrate
> sind...naja ich hab dann im grunde nur die norm von x
> ausgerechnet und dann per quadratischer ergänzung solange
> umgeformt bis ich 3 summanden hatte, die jeweils quadrate
> waren....mal schauen ob das richtig ist so...

Wenn du das systematisch machen willst, dann musst du die Matrix orthogonal diagonalisieren.

Wenn du die Diagonalmatrix noch als Quadrat schreibst, kannst du das Skalarprodukt [mm] $v^T [/mm] A v$ dann als $(B [mm] v)^T [/mm] (B v)$ schreiben mit einer passenden Matrix $B$, die sich aus der Wurzel von der Diagonalmatrix sowie der Transformationsmatrix zusammensetzt. Das Produkt $(B [mm] v)^T [/mm] (B v)$ ergibt dir nun die gewuenschte Summe von Quadraten.

LG Felix


Bezug
        
Bezug
Zerlegung einer Norm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 07.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de