www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Zerlegung von Endomorphismen
Zerlegung von Endomorphismen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung von Endomorphismen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:03 So 18.06.2006
Autor: DJTeeJay

Aufgabe
Sei K ein algebraisch abgeschlossener Körper und V ein endlich-dim. K-Vektorraum. Zeigen Sie:

a) Jeder Endomorphismus [mm] \varphi [/mm] besitzt eine Zerlegung [mm] \varphi = \varphi_{d} + \varphi_{n} [/mm] in [mm] End_{K}(V) [/mm], wobei [mm] \varphi_{d} [/mm] diagonalisierbar und [mm] \varphi_{n} [/mm] nilpotent ist.

b) Es existieren Polynome [mm] p,q \in K[X] [/mm] mit X|p und X|q so dass [mm] \varphi_{d} = p( \varphi ) [/mm] und [mm] \varphi_{n} = q( \varphi ) [/mm] ist.
Hinweis: Verwenden Sie die Zerlegung von V in seine verallgemeinerten Eigenräume und führen Sie eine Induktion nach der Anzahl der verschiedenen Eigenwerte durch.

c) Die Zerlegung in a) ist eindeutig.
Hinweis: Benutzen Sie b).

Teil a) konnte ich lösen, indem ich die Jordan-Normalform von [mm] M_{B}( \varphi ) [/mm] zu einer beliebigen Basis B von V in eine Summe aus der mit den Eigenwerten besetzten Diagonalmatrix und der teilweise mit 1 besetzten Nebendiagonalmatrix zerlegt habe.

Aber zu Teil b) fällt mir leider nicht wirklich viel ein. Klar ist nur, dass p und q nach Voraussetzung 0 als Nullstelle haben müssen. Von daher dachte ich bei q schonmal an das Minimal- oder das Charakteristische Polynom von [mm] \varphi_{n} [/mm], weil das ja eine Potenz von X ist, aber mit diesem Ansatz komme ich irgendwie nicht weiter. Der Hinweis hilft mir auch nicht wirklich weiter, weil mir das mit den verallgemeinerten Eigenräumen nichts sagt. Ich habe diesbezüglich schon mal gegooglet und auch was gefunden, aber nur Bahnhof verstanden. Vielleicht genügt es ja schon, wenn mir das mal jemand verständlich erklären könnte.

Vielleicht ergibt sich daraus ja dann auch von selbst die Lösung zu c), bei der stehe ich leider auch total auf dem Schlauch.

Vielen Dank im Voraus (Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)!

        
Bezug
Zerlegung von Endomorphismen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 23.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de