www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Ziehungswahrscheinlichkeit
Ziehungswahrscheinlichkeit < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ziehungswahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:49 Fr 05.10.2007
Autor: Martinius

Aufgabe
In einer Warenlieferung von 20 Glühbirnen befinden sich 4 defekte Glühbirnen. Zu Kontrollzwecken werden der Lieferung 3 Glühbirnen zufällig und ohne Zurücklegen entnommen. Bestimmen Sie die Wahrscheinlichkeit dafür, dass diese Stichprobe

a) keine
b) mindestens eine
c) genau eine
d) genau zwei
e) genau drei

defekte Glühbirnen enthält.

Hallo,

ich habe eine Verständnisfrage zu dieser Aufgabe.

Man kann sie durch Angabe der Kombinationen ohne Wiederholung lösen.

P(a) = [mm] \bruch{C(16;3)}{C(20;3)} [/mm] = 49,12 %

P(b) = 1 - P(a) = 50,88 %

P(c) = [mm] \bruch{C(16;2)*C(4;1)}{C(20;3)} [/mm] = 42,11 %

P(d) = [mm] \bruch{C(16;1)*C(4;2)}{C(20;3)} [/mm] = 8,42 %

P(e) = [mm] \bruch{C(4;3)}{C(20;3)} [/mm] = 0,35 %


Jetzt kann man P(a) und P(e) aber auch durch die Multiplikation der Ziehungswahrscheinlichkeiten ausrechnen:

$P(a) = [mm] \bruch{16}{20} [/mm] * [mm] \bruch{15}{19} [/mm] * [mm] \bruch{14}{18} [/mm] = 49,12$ %

$P(e) = [mm] \bruch{4}{20} [/mm] * [mm] \bruch{3}{19} [/mm] * [mm] \bruch{2}{18} [/mm] = 0,35$ %


Wieso geht das nicht analog bei P(c) und P(d) ?

$P(c) [mm] \not= \bruch{16}{20} [/mm] * [mm] \bruch{15}{19} [/mm] * [mm] \bruch{4}{18} [/mm] = 14,04$ %

$P(d) [mm] \not= \bruch{16}{20} [/mm] * [mm] \bruch{4}{19} [/mm] * [mm] \bruch{3}{18} [/mm] = 2,81$ %

LG, Martinius




        
Bezug
Ziehungswahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Fr 05.10.2007
Autor: koepper

Hallo Martinius,

> In einer Warenlieferung von 20 Glühbirnen befinden sich 4
> defekte Glühbirnen. Zu Kontrollzwecken werden der Lieferung
> 3 Glühbirnen zufällig und ohne Zurücklegen entnommen.
> Bestimmen Sie die Wahrscheinlichkeit dafür, dass diese
> Stichprobe
>  
> a) keine
>  b) mindestens eine
>  c) genau eine
>  d) genau zwei
>  e) genau drei
>  
> defekte Glühbirnen enthält.
>  Hallo,
>  
> ich habe eine Verständnisfrage zu dieser Aufgabe.
>  
> Man kann sie durch Angabe der Kombinationen ohne
> Wiederholung lösen.
>  
> P(a) = [mm]\bruch{C(16;3)}{C(20;3)}[/mm] = 49,12 %
>  
> P(b) = 1 - P(a) = 50,88 %
>  
> P(c) = [mm]\bruch{C(16;2)*C(4;1)}{C(20;3)}[/mm] = 42,11 %
>  
> P(d) = [mm]\bruch{C(16;1)*C(4;2)}{C(20;3)}[/mm] = 8,42 %
>  
> P(e) = [mm]\bruch{C(4;3)}{C(20;3)}[/mm] = 0,35 %
>  
>
> Jetzt kann man P(a) und P(e) aber auch durch die
> Multiplikation der Ziehungswahrscheinlichkeiten
> ausrechnen:
>  
> [mm]P(a) = \bruch{16}{20} * \bruch{15}{19} * \bruch{14}{18} = 49,12[/mm]
> %
>  
> [mm]P(e) = \bruch{4}{20} * \bruch{3}{19} * \bruch{2}{18} = 0,35[/mm]
> %
>  
>
> Wieso geht das nicht analog bei P(c) und P(d) ?
>  
> [mm]P(c) \not= \bruch{16}{20} * \bruch{15}{19} * \bruch{4}{18} = 14,04[/mm]
> %

Das geht schon, du mußt eben nur berücksichtigen, daß der "Treffer" nicht nur an Position 3 sondern auch an Position 1 oder 2 kommen kann. In allen 3 Fällen ist die Wahrscheinlichkeit offenbar gleich. Multiplizierst du demzufolge dein Ergebnis mit 3, dann bekommst du sicher auch das oben korrekt berechnete.

> [mm]P(d) \not= \bruch{16}{20} * \bruch{4}{19} * \bruch{3}{18} = 2,81[/mm]
> %

dito, wie oben

LG, Will



Bezug
                
Bezug
Ziehungswahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Fr 05.10.2007
Autor: Martinius

Hallo Will,

vielen Dank für deinen Hinweis. Ich hätte einen Ereignisbaum zeichnen sollen, dann hätte ich es gesehen.

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de