www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Zinsesinsrechnung
Zinsesinsrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zinsesinsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 Mo 26.01.2009
Autor: Dansun1981

Aufgabe
Ab dem 01.01.06 überweist Herr Schmidt an jedem Jahresanfang 25.000,- € auf ein mit 7% p.a. verzinstes Konto. Wann kann er die Einzahlungen frühestens stoppen, wenn er am 01.01.2026 einen Kontostand von mindestens 400.000,- € realisieren will?

Kann mir hier jemand bei der Aufgabe helfen!?Wäre klasse!

Gruß Daniel

        
Bezug
Zinsesinsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Mo 26.01.2009
Autor: barsch

Hi,

der Diskontierungsfaktor ist [mm] v=\bruch{1}{1+0,07}=\bruch{1}{1,07}. [/mm]

Der Barwert der geforderten 400.000€ im Jahre 2026 ist somit [mm] 400.000*v^{20}, [/mm] vom 01.01.2006 als Einzahlungsbeginn ausgehend.

Der Barwert der Einzahlungen 25.000€ ist abhängig von der Anzahl der Einzahlungen n. Es handelt sich um vorschüssige Einzahlungen, sodass sich für den Barwert der Einzahlungen

[mm] 25.000*\summe_{k=0}^{n-1}v^k [/mm] ergibt.

Und jetzt soll n so gewählt werden, dass

[mm] 400.000*v^{20}\ge{25.000*\summe_{k=0}^{n-1}v^k} [/mm] gilt.

MfG barsch

Bezug
                
Bezug
Zinsesinsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:55 Di 27.01.2009
Autor: Dansun1981

Jetzt hab ich noch eine Frage, wie ich die Gleichung auflösen kann...die Formel ist dann doch ein bißchen zu hoch für mich;-)

Gruß Daniel

Bezug
                        
Bezug
Zinsesinsrechnung: geometrische Reihe
Status: (Antwort) fertig Status 
Datum: 08:08 Di 27.01.2009
Autor: Loddar

Hallo Dansun!


Wende zunächst auf der rechten Seite die Formel für die []geometrische Reihe an.


Gruß
Loddar


Bezug
                                
Bezug
Zinsesinsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Di 27.01.2009
Autor: Dansun1981

oh man, ich bin froh wenn ich kein mathe mehr hab;)
ich weiß beim besten willen leider nicht wie ich die gleichung auflösen kann...kann mir da eventuell jmd behilflich sein...danke schon mal im voraus:-)

Bezug
                                        
Bezug
Zinsesinsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Di 27.01.2009
Autor: barsch

Hi,

> oh man, ich bin froh wenn ich kein mathe mehr hab;)

Mathe ist doch schön ;-) (Jetzt bin ich neugierig: Was studierst du denn? Hast du Mathe im Nebenfach? Das kann man deinen Angaben leider nicht entnehmen.)

>  ich weiß beim besten willen leider nicht wie ich die
> gleichung auflösen kann...kann mir da eventuell jmd
> behilflich sein...danke schon mal im voraus:-)

Jetzt habe ich den Zettel - ich hatte es selbst einmal durchgerechnet - leider schon weggeworfen und darf es jetzt noch mal machen [heul]

Naja, wat mutt, dat mutt:

$ [mm] 400.000\cdot{}v^{20}\ge{25.000\cdot{}\summe_{k=0}^{n-1}v^k} [/mm] $

Und da kam doch schon die Steilvorlage von Loddar: Geometrische Reihe (bachte [mm] \red{\text{v<1}}). [/mm]

Nehmen wir also die rechte Seite:

[mm] 25.000\cdot{}\summe_{k=0}^{n-1}v^k=25000\bruch{1-v^{(n-1)+1}}{1-v}=25000\bruch{1-v^{n}}{1-v}, [/mm] also:

[mm] 400.000\cdot{}v^{20}\ge{25000\bruch{1-v^{n}}{1-v}} [/mm]

Naja, jetzt ein wenig umstellen (und für v den anfangs berechneten Wert einsetzen!)

[mm] 400.000\cdot{}v^{20}*(1-v)\ge{25000*(1-v^{n})} [/mm]

[mm] \bruch{400.000\cdot{}v^{20}*(1-v)}{25000}\ge{1-v^{n}} [/mm]


[mm] \bruch{400.000\cdot{}v^{20}*(1-v)}{25000}-1\ge{-v^{n}} [/mm]

Jetzt müssten auf beiden Seiten negative Werte stehen, also [mm] \cdot{(-1)}. [/mm]

Den Ln auf beide Seiten draufhauen, ein letztes mal durch v teilen, immer auf die [mm] \ge-Relation [/mm] achten und dann sollte [mm] n\ge{4,...} [/mm] rauskommen (sofern ich mich recht entsinne), sodass du sagen kannst [mm] n\ge{5}. [/mm]

MfG barsch

Bezug
        
Bezug
Zinsesinsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Mi 28.01.2009
Autor: Josef

Hallo Daniel,

> Ab dem 01.01.06 überweist Herr Schmidt an jedem
> Jahresanfang 25.000,- € auf ein mit 7% p.a. verzinstes
> Konto. Wann kann er die Einzahlungen frühestens stoppen,
> wenn er am 01.01.2026 einen Kontostand von mindestens
> 400.000,- € realisieren will?


Der Ansatz lautet:

[mm] 25.000*\bruch{1,07^n -1}{0,07}*\bruch{1}{1,07^n} [/mm] = [mm] \bruch{400.000}{1,07^{21}} [/mm]


Die Einzahlungen können frühestens nach 4,661 Jahren gestoppt werden.


Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de