www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zufallsvariablen
Zufallsvariablen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariablen: Problem mit plim
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 21.01.2012
Autor: randomsamson

Hallo zusammen,

ich kann einen Widerspruch bezüglich der Definition einer Zufallsvariablen nicht auflösen:

Im Stochastik-Buch von Georgii liest man zur Definition von Zufallsvariablen auf Seite 21:
"Seien (Ω,F) und (Ω‘,F‘) zwei Ereignisräume. Dann heißt jede Abbildung X : Ω [mm] \to [/mm] Ω‘ mit der Eigenschaft  A‘ ∈ F‘   [mm] \Rightarrow X^{-1} [/mm] A‘  ∈  F  
eine Zufallsvariable von (Ω,F) nach (Ω‘,F‘)."

Der Ereignisraum für den n-maligen Münzwurf ist Ω = [mm] {0,1}^{n}, [/mm] der Ereignisraum für "wie oft ist Zahl gefallen" ist Ω' = {0,1, ... ,n} und die Abbildung X : Ω [mm] \to [/mm] Ω‘ dementsprechend eine Zufallsvariable.


Im Ökonometrie-Buch von Davidson & MacKinnon (Econometric Theory and Methods) liest man auf Seite 93:
"A simple example of a nonstochastic plim is the limit of the proportion of heads in a series of independent tosses of an unbiased coin."


Bei Georgii ist von einer Häufigkeit die Rede, bei Davidson von Limes eines Anteils. Der Anteil ist nach meinem Verständnis aber ebenfalls eine Zufallsvariable, er setzt sich ja ebenfalls aus 2 Anzahlen zusammen: Anzahl Kopf / Anzahl Gesamtwürfe.

Wieso ist der Limes des Anteils der Kopfwürfe also ein Beispiel für einen NICHT-stochastischen plim???

Ich hoffe mir kann jemand helfen. Vielen Dank schonmal!




Ach ja: "Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt."


        
Bezug
Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Sa 21.01.2012
Autor: donquijote


> Hallo zusammen,
>  
> ich kann einen Widerspruch bezüglich der Definition einer
> Zufallsvariablen nicht auflösen:
>  
> Im Stochastik-Buch von Georgii liest man zur Definition von
> Zufallsvariablen auf Seite 21:
>  "Seien (Ω,F) und (Ω‘,F‘) zwei Ereignisräume. Dann
> heißt jede Abbildung X : Ω [mm]\to[/mm] Ω‘ mit der
> Eigenschaft  A‘ ∈ F‘   [mm]\Rightarrow X^{-1}[/mm] A‘  ∈  
> F  
> eine Zufallsvariable von (Ω,F) nach (Ω‘,F‘)."
>  
> Der Ereignisraum für den n-maligen Münzwurf ist Ω =
> [mm]{0,1}^{n},[/mm] der Ereignisraum für "wie oft ist Zahl
> gefallen" ist Ω' = {0,1, ... ,n} und die Abbildung X :
> Ω [mm]\to[/mm] Ω‘ dementsprechend eine Zufallsvariable.
>  
>
> Im Ökonometrie-Buch von Davidson & MacKinnon (Econometric
> Theory and Methods) liest man auf Seite 93:
>  "A simple example of a nonstochastic plim is the limit of
> the proportion of heads in a series of independent tosses
> of an unbiased coin."
>  
>
> Bei Georgii ist von einer Häufigkeit die Rede, bei
> Davidson von Limes eines Anteils. Der Anteil ist nach
> meinem Verständnis aber ebenfalls eine Zufallsvariable, er
> setzt sich ja ebenfalls aus 2 Anzahlen zusammen: Anzahl
> Kopf / Anzahl Gesamtwürfe.
>  
> Wieso ist der Limes des Anteils der Kopfwürfe also ein
> Beispiel für einen NICHT-stochastischen plim???

Für festes n ist der Anteil natürlich eine Zufallsvariable. Der Grenzwert für [mm] n\to\infty [/mm] ist jedoch nach dem Gesetz der großen Zahlen die Konstante 1/2, die nach Definition einen "nonstochastic plim" darstellt.

>  
> Ich hoffe mir kann jemand helfen. Vielen Dank schonmal!
>  
>
>
>
> Ach ja: "Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt."
>  


Bezug
                
Bezug
Zufallsvariablen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Sa 21.01.2012
Autor: randomsamson

Vielen Dank! Alles klar jetzt! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de