www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zufallsvariablen mit Varianz 0
Zufallsvariablen mit Varianz 0 < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariablen mit Varianz 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:28 Mo 05.07.2004
Autor: rossi

Hi Ihr....

Ich komm bei folgender Aufgabenstellung nicht weiter:

Kennzeichnen Sie alle diskret verteilten reellen Zufallsvariablen mit Varianz 0!

Wie muss ich da vorgehen .......

Also wär nett, wenn wer da was wissen würde!

Gruß
Rossi

        
Bezug
Zufallsvariablen mit Varianz 0: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Mo 05.07.2004
Autor: Brigitte

Hallo Rossi,

> Kennzeichnen Sie alle diskret verteilten reellen
> Zufallsvariablen mit Varianz 0!

Wie sieht denn die Formel aus für die Varianz einer diskret verteilten Zufallsvariable. Das ist doch eine Summe von quadrierten Differenzen. Und wenn die Summe 0 sein muss, kannst Du doch Bedingungen an die einzelnen (nichtnegativen) Summanden stellen. Daraus solltest Du ableiten können, wie die Verteilung aussieht.

Probier's mal aus. Du kannst Dich ja dann noch mal melden.

Gruß
Brigitte

Bezug
                
Bezug
Zufallsvariablen mit Varianz 0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Mo 05.07.2004
Autor: rossi

Hi Brigitte...


> Wie sieht denn die Formel aus für die Varianz einer diskret
> verteilten Zufallsvariable. Das ist doch eine Summe von
> quadrierten Differenzen.

jupp - hast du Recht!!!

> Und wenn die Summe 0 sein muss,
> kannst Du doch Bedingungen an die einzelnen
> (nichtnegativen) Summanden stellen. Daraus solltest Du
> ableiten können, wie die Verteilung aussieht.

Mmmm aber bekomm ich da eine Abhängigkeit oder kann ich da ne Reihe aufstellen ... *Grrr* irgendwie versteh ich des noch nicht so ganz.....


Gruß
Rossi

Bezug
                        
Bezug
Zufallsvariablen mit Varianz 0: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mo 05.07.2004
Autor: Brigitte

Hallo Rossi!

> > Wie sieht denn die Formel aus für die Varianz einer
> diskret
> > verteilten Zufallsvariable. Das ist doch eine Summe von

(gewichteten)

> > quadrierten Differenzen.
>  jupp - hast du Recht!!!

Dann schreibe ich mal die Formel auf, an die ich denke:

[mm]Var(X)=\sum\limits_{i} (x_i-E(X))^2\cdot P(X=x_i)[/mm]

wobei über alle Ergebnisse [mm] $x_i$, [/mm] d.h. mit [mm] $P(X=x_i)>0$ [/mm] summiert wird.


> > Und wenn die Summe 0 sein muss,
> > kannst Du doch Bedingungen an die einzelnen
> > (nichtnegativen) Summanden stellen. Daraus solltest Du
>
> > ableiten können, wie die Verteilung aussieht.
>  Mmmm aber bekomm ich da eine Abhängigkeit oder kann ich da
> ne Reihe aufstellen ... *Grrr* irgendwie versteh ich des
> noch nicht so ganz.....

Also wenn obige Summe 0 sein soll, dann muss doch gelten:

[mm](x_i-E(X))^2=0 \qquad\forall i[/mm]

Macht es jetzt klick? ;-)

Viele Grüße
Brigitte


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de