Zusammenhängende Mengen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:19 Mo 01.05.2006 | Autor: | Jomira |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich weiß nicht so ganz, wie ich das nachweisen soll.
Könnte mir vielleicht jemand einfach mal ein Bsp für einen Nachweis von zusammenhängend und nicht zusammenhängend schreiben.
Ich finde einfach keins.
Gruß Jomira
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:42 Mo 01.05.2006 | Autor: | felixf |
Hallo Jomira!
> Ich weiß nicht so ganz, wie ich das nachweisen soll.
> Könnte mir vielleicht jemand einfach mal ein Bsp für einen
> Nachweis von zusammenhängend und nicht zusammenhängend
> schreiben.
Haeufig macht man das so, dass man zeigt, das eine Menge wegzusammenhaengend ist: daraus folgt, dass die zusammenhaengend ist. Ein Beispiel dafuer ist etwa die Menge $[0, 1]$. Das sie wegzusammenhaengend ist ist klar.
Seien [mm] $U_1, U_2 \subseteq [/mm] [0, 1]$ offen (in $[0, 1]$) mit [mm] $U_1 \cap U_2 [/mm] = [mm] \emptyset$ [/mm] und [mm] $U_1 \cup U_2 [/mm] = [0, 1]$. Sind [mm] $U_1 \neq \emptyset \neq U_2$, [/mm] so gibt es ein $u [mm] \in U_1$, [/mm] $v [mm] \in U_2$. [/mm] Sei $f : [0, 1] [mm] \to [/mm] [0, 1]$, $t [mm] \mapsto [/mm] t (v - u) + u$ ein Weg in $[0, 1]$ von $u$ nach $v$, und sei [mm] $t_0 [/mm] = [mm] \sup\{ t \in [0, 1] \mid f([0, t]) \subseteq U_1 \}$.
[/mm]
Dann ist [mm] $f(t_0) \not\in U_0$, [/mm] da ansonsten [mm] $f(t_0)$ [/mm] ein Randpunkt von [mm] $U_0$ [/mm] waere, der in [mm] $U_0$ [/mm] liegt: ein Widerspruch zu [mm] $U_0$ [/mm] offen! Da [mm] $f(t_0) \in [/mm] [0, 1] = [mm] U_1 \cup U_2$ [/mm] muss also [mm] $f(t_0) \in U_2$ [/mm] liegen. Jedoch gilt $f(t) [mm] \in U_1$ [/mm] fuer $t < [mm] t_0$, [/mm] womit [mm] $f(t_0)$ [/mm] kein innerer Punkt von [mm] $U_2$ [/mm] sein kann (da $f$ stetig ist). Aber dann ist [mm] $U_2$ [/mm] nicht offen, ein Widerspruch!
Also war die Annahme, dass [mm] $U_1 \neq \emptyset \neq U_2$ [/mm] ist, falsch, und somit ist entweder [mm] $U_1 [/mm] = [mm] \emptyset$ [/mm] oder [mm] $U_2 [/mm] = [mm] \emptyset$. [/mm] Also ist $[0, 1]$ zusammenhaengend.
Und nun ein Beispiel fuer nicht zusammenhaengend: Die Menge $M := [1, 2] [mm] \cup [/mm] [3, 4]$ ist nicht zusammenhaengend: Setze [mm] $U_1 [/mm] := [1, 2]$, [mm] $U_2 [/mm] := [3, 4]$. Dann sind [mm] $U_1, U_2 \subseteq [/mm] M$ offen, nichtleer, es gilt [mm] $U_1 \cap U_2 [/mm] = [mm] \emptyset$ [/mm] und [mm] $U_1 \cup U_2 [/mm] = M$. Somit ist $M$ nicht zusammenhaengend.
Noch ein Hinweis: Es gibt zusammenhaengende Mengen, die nicht wegzusammenhaengend sind. Dort muss man dann passend `tricksen'; ein allgemeines Rezept zum Nachweis von Zusammenhang oder nicht-Zusammenhang gibt es nicht...
LG Felix
|
|
|
|