www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Zusammenhang von Funktionen
Zusammenhang von Funktionen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Di 05.12.2006
Autor: maresi1

Aufgabe
Der Zug nähert sich dem bahnhof mit einer geschwindigkeit von 90km/h .
er bremst mit einer verzögerung (neg. beschl) von a(t)=-0.5 m/s²

a) ermittel die Geschwindigkeits- u Wegfunktion in Abhängigkeit von Zeit.

b) Nach wie viel sek steht der zug?

c) nach wie viel meter vor dem bahnhof muss der zug zu bremsen beginnen?

d) Welche geschw. hat er 100 m vor dem Bahnhof?

hallo!

Ich habe ein frage zu folgendem bsp aus mathe:



Meine frage: bei der Schularbeit muss man argumentieren, und den zusammenhang zw den fkt erklären. Könnte mir das jemand erklären . also den zusammenhang zw der Beschlfkt der wegfkt und der geschwindfkt? also wie geht man vor , wenn man zeit und weg aus einer beschlfkt ausrechnen muss? danke vielmals für JEDEN tip! also folgendes hab ich schon mal beschlfkt: a(t)=v ' (t)=g   und wie kommt man jetzt auf die anderen?

lG m



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:uniprotokoll

        
Bezug
Zusammenhang von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Di 05.12.2006
Autor: Event_Horizon

Es gibt eigentlich nur ZWEI formeln, die du brauchst:

[mm] $s(t)=s_0+v_0t+\bruch{1}{2}at^2$ [/mm]

[mm] $v(t)=v_0+at$ [/mm]

Zum Zeitpunkt t=0 soll der Zug mit dem Bremsen beginnen. [mm] v_0 [/mm] ist dann die Anfangsgeschwindigkeit von 90km/h (die du natürlich erstmal in m/s umrechnest!)

Auch wollen wir hier den Punkt, ab dem die Strecke gemessen wird, festlegen. Also [mm] s_0=0 [/mm]

Eingesetzt ergibt das schon die Lösung zu 1).

b)
Wann ist die Geschwindigkeit v(t)=0? Das kann man aus der zweiten Gleichung errechnen, die muß =0 gesetzt werden.

c)
Das ist der bremsweg. Setze die grade berechnete Zeit in die erste Gleichung ein, und du erhälst die Strecke, nach der der Zug steht, also im Bahnhof sein muß.

d)

Ziehe von dem ergebnis von c) 100m ab. Diese Strecke hat der Zug also seit Beginn des Bremsens zurückgelegt. Wenn du das mit der ersten Gleichung gleich setzt, kannst du daraus die Zeit bestimmten, zu der der Zug 100m vor dem Bahnhof ist. Diese Zeit kannst du in die zweite Gleichung einsetzen, und erhälst die Geschwindigkeit zu diesem Zeitpunkt.

Bezug
                
Bezug
Zusammenhang von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Mi 06.12.2006
Autor: maresi1

ok. dake erstmal , werd das jez mit deinen erklärungen noch mal checken! dank dir bd!

Bezug
                
Bezug
Zusammenhang von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:54 Fr 08.12.2006
Autor: mathemak

Hallo!

Was bei der Geschichte unschön ist:

Die Funktion $s$ ist eine quadratische Funktion. Daraus folgt, dass die Beschleunigugn als zweite Ableitung der Funktion $s$ konstant ist.

Das ist unvereinbar mit "DER ZUG STEHT IM BAHNHOF".

Ich glaube, dass die Beschleunigung eines stehenden Zuges gleich Null ist.

Graphisch müsste an der Stelle ein Sattelpunkt (Terassenpunkt) sein, da dort die erste Ableitung (Geschwindigkeit)  und die zweite Ableitung (Beschleunigung) gleich Null sind.

Die Bewegung ist ungleichförmig beschleunigt. Ebenso wie beim Start einer Rakete.

Gruß

mathemak

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de