www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zyklische Gruppe
Zyklische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zyklische Gruppe: Idee
Status: (Frage) beantwortet Status 
Datum: 18:24 Mi 01.10.2008
Autor: mathebrainy

Aufgabe
Ist die folgende Gruppe zyklisch?

für eine natürliche Zahl n [mm] \ge [/mm] 3 sei d [mm] \in S(\IR^2), [/mm] wobei [mm] S(\IR^2) [/mm] die symmetrische Gruppe der Menge [mm] \IR^2 [/mm] bezeichnet, die Drehung um den Winkel [mm] 2\pi/n [/mm] um den Ursprung und s [mm] \in S(\IR^2) [/mm] die Spiegelung an der x-Achse. Die Diedergruppe [mm] D_{n} [/mm] ist definiert durch

[mm] D_{n}: [/mm] = [mm] \{s^i \circ d^j : i \in \{0,1\}, j \in \{0,...,n-1\}\} [/mm]

bezüglich der Kompostion [mm] \circ. [/mm] Ist die Diedergruppe [mm] (D_{n}, \circ), [/mm] n [mm] \ge [/mm] 3, zyklisch?

Liebe Mathigenies,

leider habe ich da wirklich null Ahnung wie diese Aufgabe anzupacken.

Wobei ich weiss um zu prüfen, dass eine Gruppe zyklisch ist, muss man ein erzeugendes Element finden.

kann mir jemand helfen?


Vielen Dank,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Do 02.10.2008
Autor: felixf

Hallo

> Ist die folgende Gruppe zyklisch?
>  
> für eine natürliche Zahl n [mm]\ge[/mm] 3 sei d [mm]\in S(\IR^2),[/mm] wobei
> [mm]S(\IR^2)[/mm] die symmetrische Gruppe der Menge [mm]\IR^2[/mm]
> bezeichnet, die Drehung um den Winkel [mm]2\pi/n[/mm] um den
> Ursprung und s [mm]\in S(\IR^2)[/mm] die Spiegelung an der x-Achse.
> Die Diedergruppe [mm]D_{n}[/mm] ist definiert durch
>  
> [mm]D_{n}:[/mm] = [mm]\{s^i \circ d^j : i \in \{0,1\}, j \in \{0,...,n-1\}\}[/mm]
>  
> bezüglich der Kompostion [mm]\circ.[/mm] Ist die Diedergruppe
> [mm](D_{n}, \circ),[/mm] n [mm]\ge[/mm] 3, zyklisch?
>  Liebe Mathigenies,
>  
> leider habe ich da wirklich null Ahnung wie diese Aufgabe
> anzupacken.
>  
> Wobei ich weiss um zu prüfen, dass eine Gruppe zyklisch
> ist, muss man ein erzeugendes Element finden.

Oder man wendet Theorie an.

Alternativ kann man auch zeigen, dass sie nicht zyklisch ist. Zyklische Gruppen sind ja insbesondere kommutativ. Ist die Diedergruppe kommutativ?

LG Felix


Bezug
                
Bezug
Zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Do 02.10.2008
Autor: mathebrainy

Hallo Felix,

danke für deine Antwort.

Wie kann ich prüfen ob die Diedergruppe kommutativ ist?

Sorry für diese Frage,

LG

Bezug
                        
Bezug
Zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Do 02.10.2008
Autor: angela.h.b.


> Wie kann ich prüfen ob die Diedergruppe kommutativ ist?

Hallo,

durch nachrechnen.

Nimm Dir mal ein gleichseitiges Dreieck. Spiegele. Drehe um 120°. Was kommt raus?
Drehe um 120°. Spiegele. Stimmen die ergebnise überein.

Dasselbe für Quadrat, gleichseitiges 5-Eck.

Und dann für ein n-Eck.

Gruß v. Angela






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de