www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zyklische Gruppe
Zyklische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 So 02.12.2012
Autor: diab91

Aufgabe
Sei G eine endliche Gruppe. Hat G für jeden Teiler d von |G| höchstens eine Untergruppe der Ordnung d, so ist G zyklisch.

Guten Abend,

ich habe versucht den obigen Satz zu beweisen. Leider komme ich nicht wirklich weiter. Ich habe folgendes versucht:Sei G eine endliche Gruppe mit Ordnung n. Sei U eine Untergruppe von G mit Ordnung d, wobei d der kleinste echte Teiler von |G| sein soll. Sei f: U [mm] \to [/mm] G, u [mm] \mapsto gug^{-1}. [/mm] f ist ein injektiver Homomorphismus und somit gilt: U [mm] \cong gUg^{-1}. [/mm] Da es nur eine Untergruppe gibt ist sogar U = [mm] gUg^{-1} [/mm] und somit U ein Normalteiler von G. Dann hat die Gruppe G/U die Ordnung [mm] \bruch{n}{d}. [/mm] Nun könnte man das ganze wieder auf G/U anwenden. Allerdings habe ich keine Ahnung ob mir das in irgendeinerweise etwas bringt. Stimmt das überhaupt was ich da versucht habe?

Liebe Grüße,
Diab91

        
Bezug
Zyklische Gruppe: Ansatz
Status: (Antwort) fertig Status 
Datum: 22:33 Mo 03.12.2012
Autor: wieschoo


> Sei G eine endliche Gruppe. Hat G für jeden Teiler d von
> |G| höchstens eine Untergruppe der Ordnung d, so ist G
> zyklisch.
>  Guten Abend,
>  
> ich habe versucht den obigen Satz zu beweisen. Leider komme
> ich nicht wirklich weiter. Ich habe folgendes versucht:Sei
> G eine endliche Gruppe mit Ordnung n. Sei U eine
> Untergruppe von G mit Ordnung d, wobei d der kleinste echte
> Teiler von |G| sein soll. Sei f: U [mm]\to[/mm] G, u [mm]\mapsto gug^{-1}.[/mm]
> f ist ein injektiver Homomorphismus und somit gilt: U [mm]\cong gUg^{-1}.[/mm]
> Da es nur eine Untergruppe gibt ist sogar U = [mm]gUg^{-1}[/mm] und
> somit U ein Normalteiler von G. Dann hat die Gruppe G/U die
> Ordnung [mm]\bruch{n}{d}.[/mm] Nun könnte man das ganze wieder auf
> G/U anwenden. Allerdings habe ich keine Ahnung ob mir das
> in irgendeinerweise etwas bringt. Stimmt das überhaupt was
> ich da versucht habe?
>
> Liebe Grüße,
>  Diab91

Sei G eine endliche Gruppe mit |G|=n.
Ziel: Existenz eines Elementes [mm] $h\in [/mm] G$ mit Ordnung n.

Man kann das abstrakter ohne den inneren Automorphismus machen.

1.Schritt
Sei [mm]d\mid |G|[/mm] für eine endliche Gruppe. Ist [mm]g\in G[/mm] ein Element der Ordnung d, so erzeugt [mm]\langle g\rangle = U\leq G[/mm].

Da U einzige Ungruppe mit Ordnung d , sind alle Elemente der Ordnung d drin.
Wegen G zyklisch, gibt es [mm]\phi(d)[/mm] oder kein Element der Ordnung d.

2. Schritt
Fehlt noch: #Elemente der Ordnung d ist [mm]\leq \phi(d)[/mm] für jeden Teiler d | |G|:

Sei [mm]H_d[/mm] Menge aller Elemente von G mit Ordnung d. Dann gibt es eine Zerlegung von [mm]G=\bigcup \ldots [/mm] mit Satz von Lagrange und es ist [mm]n=|G|=\sum_{d\mid n} |H_d|\leq \sum_{d\mid n} \phi(n) = n[/mm]

Was ist mit [mm]|H_n|[/mm]?
Jetzt du.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de