www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zyklische Gruppen
Zyklische Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zyklische Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Sa 20.06.2009
Autor: nitramGuk

Aufgabe
1. z.Z.: Gruppe [mm](G,\cdot)[/mm], [mm]G=\{1,-1,i,-i\}\subseteq\IC[/mm], [mm]*[/mm] ist die Multiplikation komplexer Zahlen, ist zyklisch

2. Bestimmen Sie alle Erzeuger von G

3. Bestimmen Sie alle Erzeuger der zyklischen Gruppe [mm](\IZ_{12},+)[/mm]. Welche Gesetzmäßigkeit fällt Ihnen auf?

4. Sei [mm](G,\circ)[/mm] eine abelsche Gruppe. [mm]a,b \in G, a\ne b[/mm] und ord(a) = ord(b) = 2.
Bestimmen sie die Ordnung von [mm]a\circ b[/mm]

1.:

In der Gruppentheorie ist eine zyklische Gruppe eine Gruppe, die von einem einzelnen Element a erzeugt wird

Da ja schon gegeben ist, G ist eine Gruppe, muss ich ja nur noch dieses eine Element a (aus den 4) finden, welches ganz G erzeugt? Dann habe ich ja gezeigt, dass diese Gruppe zyklisch ist?

Nur leider kann ich mit komplexen Zahlen überhaupt nicht umgehen, hab mir zwar die Definition für die Multiplikation angeschaut:
(ac-bd)+(ad+bc)*i

Aber wo hab ich hier ein a,b,c,d ?

Ich hätte vorgehabt, eine Gruppentafel aufzustellen:

* | 1 -1 i -i
1 |
-1|
i |
-i|

Aber komm nicht drauf, wie ich die jetzt ausfüllen muss.
Wenn ich das hab, sollte ich es hinbekommen, den Erzeuger bzw. alle Erzeuger abzulesen, somit wäre 2.) auch damit lösbar?


zu3.:

Da hätte ich es jetzt auch so gemacht, die Verknüpfunstabelle aufgestellt, ausgefüllt (das schaff ich noch gerade so ;-) ), daran dann die Erzeuger 1,5,7,11 abgelesen, und dann als Gesetzmäßigkeit, dass es a) keine Geraden Zahlen sind, und b) auch keine Zahlen, die 12 teilen bzw. c) einen gemeinsamen Teiler mit 12 haben, der ungleich 1 ist.

Also alle Zahlen von 1-11, deren ggT mit 12 genau 1 ist?

Oder ist da eine ganz andere Gesetzmäßigkeit gemeint, und meine Version mit stupidem Ausprobieren/Ablesen aus der Tabelle ist die falsche Herangehensweise?

zu 4.:

Ordnung heißt ja, wie oft muss ich das Element mit sich selbst verknüpfen, bis das neutrale Element herauskommt?

Also nach der Vorgabe dann ja [mm]a \circ a = e[/mm] (e=neutrales Element) bzw. das selbe für b.

Aber die Ordnung gilt doch nur für 1 Element, und gefragt ist die Ordnung der Verknüpfung 2er Elemente?

Könnte mir das so vorstellen, dass man herausfinden muss, wie oft man [mm]a \circ b[/mm] mit sich selbst verknüpfen muss, bis e rauskommt.

Das wäre ja auch 2 mal:

[mm](a \circ b) \circ (a \circ b)= a\circ a \circ b \circ b= e\circ e = e[/mm]
Das weiß man ja, da es eine abelsche Gruppe ist (Assoziativ, kommutativ,neutrales Element.

Somit Ordnung von [mm]a \circ b[/mm] ist auch 2?


Leider sehr viele Fragen, aber mit Gruppen und komplexen Zahlen kann ich nicht so viel anfangen [keineahnung]

Ich habe diese Frage(n) in keinem anderen Internetforum gestellt.


        
Bezug
Zyklische Gruppen: etwas zu i
Status: (Antwort) fertig Status 
Datum: 16:57 Sa 20.06.2009
Autor: moudi

Hallo nitramGuk

Die "Idee" der komplexen Zahl $i$ ist, dass [mm] $i^2=-1$ [/mm] ist. Man kann $i$ wie eine "Variable" behandeln und reduziert einfach alle Quadrate von $i$ zu $-1$. Deshalb gitlt [mm] $i^2=-1$, $i^3=i^2\cdot [/mm] i=-i$, [mm] $i^4=i^2\cdot i^2=(-1)\cdot(-1)=1$. [/mm]

3. und 4. sind korrekt.

mfG Moudi

Bezug
                
Bezug
Zyklische Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Sa 20.06.2009
Autor: nitramGuk


> Die "Idee" der komplexen Zahl [mm]i[/mm] ist, dass [mm]i^2=-1[/mm] ist. Man
> kann [mm]i[/mm] wie eine "Variable" behandeln und reduziert einfach
> alle Quadrate von [mm]i[/mm] zu [mm]-1[/mm]. Deshalb gitlt [mm]i^2=-1[/mm],
> [mm]i^3=i^2\cdot i=-i[/mm], [mm]i^4=i^2\cdot i^2=(-1)\cdot(-1)=1[/mm].

OK, nur zum Test, ob ich das jetzt auch verstanden habe ;-)


* | 1 -1  i -i
1 | 1 -1  i -i
-1|-1  1 -i  i
i | i -i -1  1
-i|-i  i  1 -1

Die Gruppe ist also zyklisch, da ja bsp. wie du schon alle Möglichkeiten aufgeführt hast, i ein Erzeuger ist.

Dann wäre -i noch ein Erzeuger, 1 und -1 aber nicht.

> 3. und 4. sind korrekt.

Danke

MfG nitramGuk



Bezug
                        
Bezug
Zyklische Gruppen: Jep!
Status: (Antwort) fertig Status 
Datum: 18:21 So 21.06.2009
Autor: moudi

Genau so ist es.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de