www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - abelsche Gruppen
abelsche Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsche Gruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:11 Sa 17.06.2006
Autor: sonnenfee23

Aufgabe
Sei G eine abelsche Gruppe und m := max{ord(g) |g [mm] \in [/mm] G}.
Beweisen Sie: dann gilt ord(g) |m für jedes g [mm] \in [/mm] G.  

Hallo!
Dies ist die zweite Aufgabe, von der mir die Haare zu Berge stehen,... Ich verstehe nur Bahnhof, d.h. kann mir es jemand erklären, wie ich vorgehen muss und mir Tipps/Lösung geben, damit ich so eine Aufgabe in einer Klausur lösen kann?!
Danke schonmal im Vorraus!

MfG

        
Bezug
abelsche Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:22 So 18.06.2006
Autor: Micha

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

> Sei G eine abelsche Gruppe und m := max{ord(g) |g [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

G}.

>  Beweisen Sie: dann gilt ord(g) |m für jedes g [mm]\in[/mm] G.


Hmm das ist doch eigentlich nur schauen, was die Definitionen sagen:

$ord(g) = ord [mm] \left< g \right>$ [/mm] , also die Ordnung der von g erzeugten zyklischen Untergruppe. Und dann musst du noch schauen, dass [mm] $\left< g \right>$ [/mm] eine Untergruppe von G ist, dann folgt die Aussage nach dem Satz von Lagrange.

Gruß Micha ;-)

Bezug
        
Bezug
abelsche Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 So 18.06.2006
Autor: Jan_Z

Hallo,
ich verstehe irgendwie nicht, was Micha meint (welches g meint er und warum ist zu schauen, dass <g> eine Untergruppe von G ist?)
Habe einen anderen Vorschlag:
Sei h das Element maximaler Ordnung, sei g ein beliebiges Element von G und n dessen Ordnung. Zu zeigen ist: n|m.
Betrachte das Element gh. Es ist nicht schwierig zu zeigen (unter Verwendung der Tatsache, dass G abelsch ist), dass ord(gh)=kgV(m,n)=(mn)/ggT(m,n).
Angenommen n teilt nicht m, also ggT(m,n)<n, also kgV(m,n)>m. Dann ist aber ord(gh)>ord(h), im Widerspruch zur Maximalität von ord(h).
Viele Grüße,
Jan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de