www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - abelsche Gruppen
abelsche Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsche Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Mo 23.12.2013
Autor: ElizabethBalotelli

Aufgabe
Seien G und H abelsche Gruppen mit Mächtigkeit G= Mächtigkeit H [mm] \in \IP. [/mm] Zeige G [mm] \cong [/mm] H.

Kann mir erst mal jemand erklären, wass das [mm] \in \IP [/mm] bedeutet? ALso wenn die Mächtigkeit eine Primzahl ist?
Und wenn ja, wie würde man danach vorgehen? Mit Induktionsverfahren, kann man sowas ja nicht beweisen....

Vielen Dank für Ratschläge =)

        
Bezug
abelsche Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Mo 23.12.2013
Autor: UniversellesObjekt

Hallo Elizabeth,

Ja, es ist gemeint, dass die Ordnung prim ist. Die Voraussetzung der Kommutativität ist übrigens nicht nötig. Insbesondere ist die Ordnung größer als 1. Wähle ein nichttriviales Element in G bzw H. Welche Ordnung hat die hiervon erzeugte Untergruppe?

Andersrum kann man auch so an das Problem gehen: Welche Gruppe der Ordnung p kennst du denn schon mal sicher? Wenn die Aufgabenstellung stimmt, musst du also zeigen, dass jede Gruppe diese Ordnung von derselben Struktur ist.

Insbesondere folgt also die Kommutativität aus den restlichen Voraussetzungen.

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
abelsche Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Mo 23.12.2013
Autor: Marcel

Hallo,

es wurde ja eigentlich schon gesagt, aber:

    [mm] $\IP:=\{p \in \IN:\;\; p \text{ ist Primzahl}\}\,,$ [/mm]

wobei man hier "Primzahl=Zahl ist prim" oder "Primzahl=Zahl ist irreduzibel"
benutzen kann (die Begriffe sind hier äquivalent).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de