www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - abgeschlossene Menge......
abgeschlossene Menge...... < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abgeschlossene Menge......: Korrektur und Tipp
Status: (Frage) beantwortet Status 
Datum: 17:49 Mo 12.11.2007
Autor: Igor1

Aufgabe
Es sei A eine nichtleere Teilmenge von [mm] \IC. [/mm] Man definiert die sogenannte Abstandsfunktion durch [mm] d_{A}(z):= [/mm] inf{|z-a|}  (a [mm] \in [/mm] A)


Zu zeigen :

(b) Die menge A ist genau dann abgeschlossen, wenn sie mit der Nullstellenmenge  {z [mm] \in \IC [/mm] | [mm] d_{A}(z)=0} [/mm] von [mm] d_{A} [/mm] übereinstimmt.

Hallo,

hier muss man also zwei Richtungen zeigen:

" [mm] \Rightarrow [/mm] "

A ist abgeschlossen [mm] \Rightarrow [/mm] D:={z [mm] \in \IC [/mm] | [mm] d_{A}(z)=0 [/mm] } =A [mm] \gdw [/mm] z [mm] \in [/mm] D

[mm] \Rightarrow [/mm] z [mm] \in [/mm] A und z [mm] \in [/mm] A [mm] \Rightarrow [/mm] z [mm] \in [/mm] D


Aus z [mm] \in [/mm] A [mm] \Rightarrow d_{A}(z):= [/mm] inf{|z-a|}=0 [mm] \gdw [/mm] z=a [mm] \Rightarrow [/mm]  z [mm] \in [/mm] A

Aus z [mm] \in [/mm] A [mm] \Rightarrow [/mm]   z=a [mm] \Rightarrow d_{A}(z):= [/mm] inf{|z-a|}=0  [mm] \Rightarrow [/mm]   z [mm] \in [/mm] D.

Ich weiss es nicht , ob es stimmt, auf jeden Fall habe ich es nicht benutzt, dass A abgeschlossen ist.


Bei der Rückrichtung  habe ich Schwierigkeit einen Ansatz zu finden.


Ich bitte um eine Korrektur und um einen Tipp für die "Rückrichtung".


Schöne Grüße

Igor





        
Bezug
abgeschlossene Menge......: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mo 12.11.2007
Autor: MatthiasKr

Hi,

> Zu zeigen :
>  
> (b) Die menge A ist genau dann abgeschlossen, wenn sie mit
> der Nullstellenmenge  z [mm]\in \IC[/mm] | [mm]d_{A}(z)=0}[/mm] von [mm]d_{A}[/mm]
> übereinstimmt.
>  Hallo,
>  
> hier muss man also zwei Richtungen zeigen:

ja.

>  
> " [mm]\Rightarrow[/mm] "
>  

> [mm]\Rightarrow[/mm] z [mm]\in[/mm] A und z [mm]\in[/mm] A [mm]\Rightarrow[/mm] z [mm]\in[/mm] D
>  
>
> Aus z [mm]\in[/mm] A [mm]\Rightarrow d_{A}(z):=[/mm] inf{|z-a|}=0 [mm]\gdw[/mm] z=a
> [mm]\Rightarrow[/mm]  z [mm]\in[/mm] A
>  
> Aus z [mm]\in[/mm] A [mm]\Rightarrow[/mm]   z=a [mm]\Rightarrow d_{A}(z):=[/mm]
> inf{|z-a|}=0  [mm]\Rightarrow[/mm]   z [mm]\in[/mm] D.
>  

tut mir leid, ich verstehe nicht genau, was du hier machst. Sieht ein bisschen danach aus, dass du dich im kreis drehst...

meine idee: du musst zwei richtungen zeigen:

[mm] $A\subset [/mm] D$ und [mm] $D\subset [/mm] A$

die erste richtung ist trivial, die zweite erfordert argumentation.
zz.

[mm] $d_A(z)=0 \Rightarrow z\in [/mm] A$

wenn [mm] $d_A(z)=0$ [/mm] dann gibt es eine minimalfolge [mm] $a_n\in [/mm] A$ mit [mm] $|z-a_n|\to [/mm] 0$. dh. aber nichts anderes als dass [mm] a_n [/mm] gegen z konvergiert. Da A abgeschlossen ist, muss der grenzwert der folge (also z) auch in A liegen. qed.
(das war jetzt die hin-richtung)



> Ich weiss es nicht , ob es stimmt, auf jeden Fall habe ich
> es nicht benutzt, dass A abgeschlossen ist.
>  
>
> Bei der Rückrichtung  habe ich Schwierigkeit einen Ansatz
> zu finden.
>  

rueckrichtung: zz.

[mm] $D=A\quad \Rightarrow [/mm] A$ abgeschlossen

sei [mm] $a_n$ [/mm] eine folge in A mit grenzwert a. du musst zeigen, dass a auch in A liegt. es gilt

[mm] $d_A(a_n)=0$ [/mm]

aus der stetigkeit von [mm] $d_A$ [/mm] (die du evtl. noch begruenden musst) folgt dann, dass auch [mm] $d_A(a)=0$. [/mm] also [mm] $a\in [/mm] D=A$. qed.

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de