www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - ableitung von ln funktion
ableitung von ln funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ableitung von ln funktion: ln funktionenschar fk (x)
Status: (Frage) beantwortet Status 
Datum: 16:06 Mo 19.03.2007
Autor: fine87

Aufgabe
ableitung von ln funktionen


hallo

ich soll die ln funktionenschar ableiten und brauche dringend hilfe

f k(x)=x(1-1/k*lnx)

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
ableitung von ln funktion: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Mo 19.03.2007
Autor: schachuzipus

Hallo,

kurze Frage: reden wir über diese Funktion?

[mm] f_k(x)=x\cdot{}\left(1-\bruch{1}{k\cdot{}ln(x)}\right) [/mm]

Gruß

schachuzipus

Bezug
        
Bezug
ableitung von ln funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mo 19.03.2007
Autor: leduart

Hallo
1.(lnx)'=1/x
2. es ist nicht zu sehen, ob lnx auch im Nenner ist! ich nehm an nein
3. 1/k ist nur ein konstanter Faktor
4. [mm] (1-\bruch{1}{k})'=\bruch{1}{kx} [/mm]
5. Produktregel solltest du koennen.
Gruss leduart

Bezug
        
Bezug
ableitung von ln funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 19.03.2007
Autor: fine87

das problem ist auch mehr die 2. ableitung

f'k(x)= 1-(1/k)-(1/k)*lnx

Bezug
                
Bezug
ableitung von ln funktion: Zweite Ableitung
Status: (Antwort) fertig Status 
Datum: 17:07 Mo 19.03.2007
Autor: barsch

Hi,

du möchstes [mm] f_{k}'(x) [/mm] = [mm] 1-\bruch{1}{k}-\bruch{1}{k}*ln(x) [/mm] ableiten?


[mm] f_{k}''(x) [/mm] = [mm] -\bruch{1}{k}*\bruch{1}{x} [/mm]

MfG



Bezug
                
Bezug
ableitung von ln funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Mo 19.03.2007
Autor: fine87

demnach ist die dritte ableitung folgende:

f'''k(x)=1/k*x-² richtig??
wenn ich die nullstellen suche ist die nullstelle bei e "hoch"k???
und das extrema ist bei (e"hoch"k²/e"hoch"k²-e"hoch"k²x)
oder lieg ich falsch????????

Bezug
                        
Bezug
ableitung von ln funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mo 19.03.2007
Autor: erlkoenig

Also die dritte Ableitung stimmt nicht ganz wenn das x-² = [mm] x^{-2} [/mm] sein sollte.

Denn die eigeltich Ableitung von [mm] -(\bruch{1}{k}*\bruch{1}{x}) [/mm] ist [mm] \bruch{1}{k*x^{2}} [/mm]

Jetzt kannst dus ja noch ma druchrechnen

Die Nullstelle müsste dann bei [mm] e^{\bruch{1}{k}} [/mm] sein

Aber ich garantiere hier für nichts denn deine Angaben sind ziemlich schwer zu lesen, viellecht solltest du mal die Eingabehilfen benutzen.

Bezug
                                
Bezug
ableitung von ln funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Di 20.03.2007
Autor: fine87

liegt das extrema bei

[mm] \{e^{k-1}| k*e^{k-1}-(e^{k-1}/k) \} [/mm]
und  es gibt keinen wendepunkt oder??

alle graphen der shar haben den gemeinsamen punkt 1. richtig?


Bezug
                                        
Bezug
ableitung von ln funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Di 20.03.2007
Autor: ccatt


> liegt das extrema bei
>  
> [mm]\{e^{k-1}| k*e^{k-1}-(e^{k-1}/k) \}[/mm]
>  und  es gibt keinen
> wendepunkt oder??
>  
> alle graphen der shar haben den gemeinsamen punkt 1.
> richtig?
>  

Hallo,

dein x-Wert des Extremas ist richtig, beim y-Wert habe ich eine andere Lösung heraus. [mm]Hp(e^{k-1}|\bruch{e^{k-1}}{k})[/mm]

Richtig ist, dass die Funktion keinen Wendepunkt hat und dass sich die Schar einen gemeinsamen Punkt 1 hat.

ccatt


Bezug
                                                
Bezug
ableitung von ln funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Di 20.03.2007
Autor: fine87

jetzt hat sich ein neues probelm auf getan
ich muss nun die funktion integrieren.

[mm] f_{k}(x)=x*(1-\bruch{1}{k}*lnx) [/mm]
ich weiß das die grenzen des integrals [mm] e^{\bruch{1}{k}} [/mm] und [mm] \limes_{n\rightarrow\0} [/mm] gegen 0

Bezug
                                                        
Bezug
ableitung von ln funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Di 20.03.2007
Autor: ccatt

Hallo,

nimm für [mm]\limes_{n\rightarrow\ 0}[/mm] erst mal eine Variable, z.B. a, löse dann das Integral soweit auf bis es nicht mehr geht. Dann kannst du a=0 setzen.

Aber ich glaube, dass deine obere Genze falsch ist. Meiner Meinung nach müsste sie [mm]e^k[/mm] sein.
Allgemein kannst du die Funktion mit der Partiellen Integration integrieren. Das hattet ihr mit Sicherheit schon, oder?

ccatt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de