www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - absolut stetig
absolut stetig < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absolut stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 So 15.11.2009
Autor: Irmchen

Aufgabe
Gegeben [mm] \nu_i , \mu_i [/mm] i= 1,2 , und [mm] \mu [/mm] [mm] \sigma [/mm] -  endliche Maße auf einem Messraum [mm] ( \Omega, \mathcal A ) [/mm].
a) Sei [mm]\nu_1 \ll \mu_1 [/mm] Dann gilt:[mm] \mu_1 \ll \nu_1 \Leftrightarrow \mu_1 ( \{ \bruch{d\nu_1 }{d\mu_1} = 0 \}) = 0 [/mm]  

Guten Abend alle zusammen!

Ich habe Fragen zu der folgenden Lösung dieser Aufgabe:

" [mm] \Rightarrow [/mm] " :
Sei [mm] \mu_1 \ll \nu_1 [/mm] Dann gilt
[mm] \nu_1 (A) = \integral_A \bruch{d\nu_1}{d\mu_1} d\mu_1 [/mm]

Gilt dies wegen Radon-Nikodym? Und wie komme man auf das [mm]\bruch{d\nu_1}{d\mu_1} d\mu_1 [/mm] im Integral?

[mm]\nu_1 ( \{ \bruch{d\nu_1}{d\mu_1} = 0 \} ) = \integral 1_{ \{\bruch{d\nu_1}{d\mu_1} = 0 \}} \bruch{d\nu_1}{d\mu_1} d\mu_1 = \integral 0 d\mu_1 = 0 [/mm]

Warum genau ist der Ausdruck [mm]1_{ \{\bruch{d\nu_1}{d\mu_1} = 0 \}} \bruch{d\nu_1}{d\mu_1} [/mm] Null auf der Menge [mm] \{\bruch{d\nu_1}{d\mu_1} = 0 \} [/mm] ?

[mm] \Rightarrow \mu_1 ( \{ {\bruch{d\nu_1}{d\mu_1} = 0 \} ) = 0 [/mm] wegen [mm]\nu_1 \ll \mu_1 [/mm].

" [mm] \Leftarrow [/mm]:

Im Folgenden gelte:

[mm] \mu_1 ( \{ {\bruch{d\nu_1}{d\mu_1} = 0 \} ) = 0 [/mm]

Zu zeigen: [mm] A \in \mathcal A [/mm], dann gilt [mm] \nu_1 [/mm] (A) = 0 [mm] \Leftarrow \mu_1 [/mm] (A) = 0 [/mm]

Sei [mm] A \in \mathcal A [/mm] mit

[mm] \nu_1 (A) = \integral_A {\bruch{d\nu_1}{d\mu_1} d\mu_1 = \integral_{A \cap \{ \bruch{d\nu_1}{d\mu_1} > 0 \} } {\bruch{d\nu_1}{d\mu_1} d\mu_1 = 0 [/mm]

Wie kommt man auf die Menge  [mm] A\cap \{ {\bruch{d\nu_1}{d\mu_1} > 0 \} [/mm] unter dem Integral und warum ist es Null ?

[mm] \Rightarrow \mu_1 ( A\cap \{ {\bruch{d\nu_1}{d\mu_1} > 0 \} ) = 0 [/mm]

[mm] \mu_1 (A) = \mu_1( A\cap \{ {\bruch{d\nu_1}{d\mu_1} = 0 \} ) + \mu_1 ( A\cap \{ {\bruch{d\nu_1}{d\mu_1} > 0 \} ) [/mm]

[mm] \mu_1(A) = 0 [/mm]

Sehe ich das richitg, dass hier viel aus dem ersten Teil der Lösung benutzt wird?


Vielen Dank für die Hilfe im voraus!

Viele Grüße
Irmchen



        
Bezug
absolut stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Mo 16.11.2009
Autor: vivo

Hallo,

1. genau wegen radon nikodym. wie man konkret auf eine radon nikodym dichte kommt ist für dieses aufgabe nicht wichtig, aber hier ein beispiel:

[mm]\mu = \lambda[/mm] das eindimensionale Lebesgue-Maß

[mm]\bruch{d\nu}{ d\mu} = \bruch{1}{\wurzel{2\pi}}e^{-\bruch{x^2}{2}}=\phi(x)[/mm] die Radon Nikodym Lebesgue Dichte zum Maß:

[mm]\nu(A) = \integral_A \bruch{1}{\wurzel{2\pi}}e^{-\bruch{x^2}{2}}dx= \Phi(A)[/mm]

2. überall da wo deine Indikatorfunktion nicht null sondern 1 ist, ist der Bruch null, also immer null.

3. du wählst doch extra ein A für dass gilt [mm] \nu(A) [/mm] = 0 denn du willst ja zeigen [mm] \nu(A)=0 [/mm] folgt [mm] \mu(A) [/mm] = 0

4. aus dem ersten teil der lösung wird da gar nichts benutzt was genau ist dir denn nicht klar?

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de