www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - abzählbare unendliche Folge
abzählbare unendliche Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abzählbare unendliche Folge: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:31 Di 02.11.2004
Autor: ALT-F4



hiho

Zeigen Sie, dass die Menhe X abzählbar unendlich ist...

X := { A [mm] \subseteq \IN [/mm] : A oder  [mm] \IN [/mm] \ A ist endlich}

Ich finde da einfach keinen Ansatz. Kann man das mit Hilfe der epsilon-Umgebung lösen?

        
Bezug
abzählbare unendliche Folge: Hinweise
Status: (Antwort) fertig Status 
Datum: 19:19 Di 02.11.2004
Autor: Gnometech

Gruß!

Nein, mit [mm] $\varepsilon$-Umgebungen [/mm] hat das hier nichts zu tun...

Vielleicht einige Hinweise:

1) Überlege Dir, dass es reicht zu zeigen, dass die Menge

[mm] $\{ A \subseteq \IN : A \mbox{ ist endlich} \}$ [/mm]

abzählbar ist.

2) Überlege Dir, dass für jedes $n [mm] \in \IN$ [/mm] die Menge aller $n$-elementigen Mengen abzählbar ist.

3) Schau Dir das "Diagonalverfahren" an, mit dem man zeigt, dass [mm] $\IQ$ [/mm] abzählbar ist.

Die Aufgabe ist von der Idee her nicht wirklich schwer, aber ich kann mir vorstellen, dass es immens schwierig ist, sie formal korrekt aufzuschreiben... aber versuch erstmal, Dir die oben genannten Punkte klarzumachen.

Lars

Bezug
                
Bezug
abzählbare unendliche Folge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:17 Di 02.11.2004
Autor: ALT-F4

"Diagonalverfahren" ?

wieso kann man den hinteren Teil (siehe Punkt 1.) einfach weglassen?

Punkt 2 ist klar...

danke für deine mühen


Bezug
                        
Bezug
abzählbare unendliche Folge: Hm
Status: (Antwort) fertig Status 
Datum: 15:12 Mi 03.11.2004
Autor: Gnometech

Gruß!

Also, Punkt 2 ist klar? Das ist gut, denn den beweist man auch mit demselben Verfahren wie die anderen. :-)

Ich nehme an, Du hast ihn mit Induktion über $n$ bewiesen... poste doch mal Deinen Beweis, da wirst Du implizit eine Art Diagonalverfahren mit benutzt haben.

Und Punkt 1 beweist man auf dieselbe Art. Die ganze Idee dahinter ist, dass [mm] $\IN \times \IN$ [/mm] abzählbar ist... bzw. der Beweis dieser Aussage.

Also, poste mal, was Du hast, dann kann ich besser erläutern, was noch fehlt.

Lars

Bezug
                                
Bezug
abzählbare unendliche Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Mi 03.11.2004
Autor: ALT-F4

hab mich heute mal bei meinen Mitstudenten schlau gemacht, also das |N x |N abzählbar ist, haben wir jetzt mit biegen und brechen bewiesen bekommen, indem wir eine Umkehrfunktion definiert haben, und dann bewiesen haben, dass diese Bijektiv ist...
Nun steh ich aber vor dem Problem, dass in meinem Beispiel in der Menge A, also auch in der Menge X Elemente doppelt vorkommen können, was ja bei |N x |N nicht der Fall sein kann.
Also hat mir dieser Ansatz nicht so weitergeholfen.
Vlt könntest du mir noch paar weitere Tipps geben.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de