www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Ähnlichkeitsdifferentialgle...
Ähnlichkeitsdifferentialgle... < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ähnlichkeitsdifferentialgle...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 So 31.10.2010
Autor: monstre123

Aufgabe
a) Lösen Sie das Anfangswertproblem [mm] y'=e^{y} [/mm]  , y(0)=0
   durch Trennung der Veränderlichen und überprüfen Sie Ihre Lösung anschließend.

b) Bestimmen Sie die Lösung der folgenden Differentialgleichung für x > 0: [mm] y'=(1+\bruch{y}{x})^{2}-\bruch{y}{x} [/mm]

Hallo,

hier mein bisheriger Ansatz:

a) [mm] y'=e^{y} [/mm]  -->  [mm] \bruch{dy}{dx}=e^{y} [/mm]  --> [mm] \bruch{1}{e^{y}}dy=dx [/mm]  --> [mm] \integral{\bruch{1}{e^{y}}dy}=\integral{dx} [/mm]

Das Problem hier ist die Integration von [mm] \bruch{1}{e^{y}} [/mm] ; [mm] e^{y} [/mm] allein wäre ja das selbe. kann ich vielleicht das so machen: [mm] ln(e^{y}) [/mm] , dann wäre:

[mm] \integral{\bruch{1}{e^{y}}dy}=\integral{dx} [/mm] --> [mm] ln(e^{y})=x+ln(C) [/mm]

Allgemeine Lösung: y= x+C

Spezielle Lösung: y=x


b) [mm] y'=(1+\bruch{y}{x})^{2}-\bruch{y}{x} [/mm]  --> [mm] \bruch{dy}{dx}=(1+\bruch{y}{x})^{2}-\bruch{y}{x} [/mm]  -->  [mm] \bruch{1}{y}dy=-\bruch{2x}{1+x^{2}}dx [/mm]

[mm] \integral{\bruch{1}{y}dy}=\integral{-\bruch{2x}{1+x^{2}}dx} [/mm] --> [mm] \integral{\bruch{1}{y}dy}=-2*\integral{\bruch{x}{1+x^{2}}dx} [/mm]

Hier die Schwierigkeit: Wie integriere ich die rechte seite? die linke ist ja ln(y).


Danke vielmals.

        
Bezug
Ähnlichkeitsdifferentialgle...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 So 31.10.2010
Autor: monstre123

bei der b) ist ein Fehler unterlaufen, ich habe das falsche blatt gehabt.

hier die b):

[mm] y'=(1+\bruch{y}{x})^{2}-\bruch{y}{x} [/mm]

[mm] \bruch{dy}{dx}=(1+\bruch{y}{x})^{2}-\bruch{y}{x} [/mm]

umformen zu: [mm] \bruch{1}{y}dy=(1+\bruch{1}{x^{2}}-\bruch{1}{x})dx [/mm]

korrekt soweit?

wenn ja, muss ich nur noch wissen, was [mm] \bruch{1}{x^{2}} [/mm] integriert ergibt.

ihr könnt aber auch die falsche b) gerne kontrollieren.


Danke.

Bezug
                
Bezug
Ähnlichkeitsdifferentialgle...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 So 31.10.2010
Autor: fencheltee


> bei der b) ist ein Fehler unterlaufen, ich habe das falsche
> blatt gehabt.
>
> hier die b):
>  
> [mm]y'=(1+\bruch{y}{x})^{2}-\bruch{y}{x}[/mm]
>  
> [mm]\bruch{dy}{dx}=(1+\bruch{y}{x})^{2}-\bruch{y}{x}[/mm]
>  
> umformen zu:
> [mm]\bruch{1}{y}dy=(1+\bruch{1}{x^{2}}-\bruch{1}{x})dx[/mm]

die umformung sieht abenteuerlich aus!
was ist dort passiert? das binom sieht echt verschandet aus. versuche mal eine substitution u=y/x

>
> korrekt soweit?

> wenn ja, muss ich nur noch wissen, was [mm]\bruch{1}{x^{2}}[/mm]
> integriert ergibt.
>  
> ihr könnt aber auch die falsche b) gerne kontrollieren.
>  
>
> Danke.  

gruß tee

Bezug
        
Bezug
Ähnlichkeitsdifferentialgle...: a)
Status: (Antwort) fertig Status 
Datum: 15:05 So 31.10.2010
Autor: fencheltee


> a) Lösen Sie das Anfangswertproblem [mm]y'=e^{y}[/mm]  , y(0)=0
> durch Trennung der Veränderlichen und überprüfen Sie
> Ihre Lösung anschließend.
>  
> b) Bestimmen Sie die Lösung der folgenden
> Differentialgleichung für x > 0:
> [mm]y'=(1+\bruch{y}{x})^{2}-\bruch{y}{x}[/mm]
>  Hallo,
>  
> hier mein bisheriger Ansatz:
>  
> a) [mm]y'=e^{y}[/mm]  -->  [mm]\bruch{dy}{dx}=e^{y}[/mm]  -->

> [mm]\bruch{1}{e^{y}}dy=dx[/mm]  -->
> [mm]\integral{\bruch{1}{e^{y}}dy}=\integral{dx}[/mm]
>  
> Das Problem hier ist die Integration von [mm]\bruch{1}{e^{y}}[/mm] ;
> [mm]e^{y}[/mm] allein wäre ja das selbe. kann ich vielleicht das so
> machen: [mm]ln(e^{y})[/mm] , dann wäre:

[mm] 1/e^y=e^{-y} [/mm] davon sollte die stammfunktion doch bekannt sein? notfalls substitution -y=z, der rest ist spielend einfach

>  
> [mm]\integral{\bruch{1}{e^{y}}dy}=\integral{dx}[/mm] -->
> [mm]ln(e^{y})=x+ln(C)[/mm]
>  
> Allgemeine Lösung: y= x+C

hättest du wie verlangt die probe gemacht, wär dir was aufgefallen ;-)

>  
> Spezielle Lösung: y=x
>  
>
> b) [mm]y'=(1+\bruch{y}{x})^{2}-\bruch{y}{x}[/mm]  -->
> [mm]\bruch{dy}{dx}=(1+\bruch{y}{x})^{2}-\bruch{y}{x}[/mm]  -->  

> [mm]\bruch{1}{y}dy=-\bruch{2x}{1+x^{2}}dx[/mm]
>  
> [mm]\integral{\bruch{1}{y}dy}=\integral{-\bruch{2x}{1+x^{2}}dx}[/mm]
> -->
> [mm]\integral{\bruch{1}{y}dy}=-2*\integral{\bruch{x}{1+x^{2}}dx}[/mm]
>  
> Hier die Schwierigkeit: Wie integriere ich die rechte
> seite? die linke ist ja ln(y).
>  
>
> Danke vielmals.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de