www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Äquivalenz
Äquivalenz < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Do 07.10.2004
Autor: otili5

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Kann mir jemand  bei dieser Schulaufgabe helfen?
Überprüfe durch Rechnung ob der Bruchterm [mm] (x^7-23x-120)/(3x-4x^²) [/mm] und [mm] (x^6+6)/(x-2) [/mm] äquivalent sind?
Danke für die Hilfe!!!

        
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Do 07.10.2004
Autor: Hugo_Sanchez-Vicario

Hallo otili,

also deine Frage ist schnell beantwortet:

wenn du mit äquivalent meinst, dass die beiden Brüche den gleichen 'Zahlenwert' haben, dann ist die Antwort: Nein!
Es müßte ja für alle möglichen x das gleiche rauskommen, aber für x=1 ist der linke 142, der rechte -7.

Hugo

Bezug
        
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Fr 08.10.2004
Autor: FriedrichLaher

Hi, otili5,

noch schneller siehst Du es mit x = 0, da wird der Nenner des Einen aber nicht des Anderen 0
oder
aber daran daß $3x - [mm] 4x^2 [/mm] = x(3-4x)$. Ein gekürzter Bruch müßte also den Nenner $x$ oder $3-4x$ haben

Bezug
                
Bezug
Äquivalenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:02 Fr 08.10.2004
Autor: Hugo_Sanchez-Vicario

Die Null wollte ich nicht nehmen, damit da nicht noch zusätzliche Diskussionen entstehen... ;-)

Bezug
        
Bezug
Äquivalenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 08.10.2004
Autor: otili5

Hallo Hugo und Friedrich:
Zuerst vielen  Dank für die schnelle Hilfe!
Ich meinte schon mit äquivalent dass die beiden Brüche den gleichen
'Zahlenwert' haben müssen also sind sie für x=1  nicht äquivalent.
Ich wollte es  aber beweisen, mit den Satz " Sind a/b und c/d Bruchterme, dann gilt in der gemeinsamen Definitionsmenge:
a/b = c/d  dann ad=bc
Ich habe es versucht und bin total durcheinandergekommen, da x so hoch potenziert wird. (Für 8 Klasse)
Also muss ich es so beweisen, wie Ihr gesagt habt.Danke

Bezug
                
Bezug
Äquivalenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Fr 08.10.2004
Autor: Professor

Hallo Nuria,

hast du zu deiner Aufgabe noch eine Frage, wenn nein, hebe ich mit dieser Bemerkung nun den Fragestatus deiner letzten Mitteilung auf.

MfG

Martin


Bezug
                
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Fr 08.10.2004
Autor: FriedrichLaher

Hallo, otili5,

da hast Du's uns aber gezeigt, ich schäme mich fast, nicht an ad = bc
gedacht zu haben.
SO schwer ist das aber auch nicht.
DA
in den "ausmultiplizierten" Produkten
[mm] $p_1=(x^7-23x-120)*(x-2)$ [/mm] und [mm] $p_2=(x^6+6)*(-4x^2+3x)$ [/mm]
SCHON
der Koeffizient von [mm] $x^8$ [/mm] für $p1$ EINS ist, aber MINUS4 für [mm] $p_2$, [/mm]
muß
die Rechnung garnicht weiter ausgeführt werden um zu sehen daß die
Brüche NICHT äquivalent sind
- sie sind es nur, wenn jedes [mm] $x^i$ [/mm] sowohl in [mm] $p_1$ [/mm] als auch [mm] $p_2$ [/mm]
der gleichen Faktor hat.
LG
F.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de