www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Äquivalenz gleichung
Äquivalenz gleichung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz gleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:09 Mo 03.01.2011
Autor: wauwau

Aufgabe
Seien a,b [mm] \in \IN [/mm] und q > p [mm] \in \IP, [/mm] der Menge der Primzahlen.
Weiters gelte [mm] ggt(a,p)=ggt(a,q)=ggt(a,b)=ggt(q,b)=ggt(b,p)=1 [/mm]

$(a-1)b [mm] \equiv [/mm] 0 (p+1)$
$(q-1)b [mm] \equiv [/mm] 0 (p+1)$

Was kann über a ausgesagt werden ?


Das einzige was mir einfällt ist, dass daraus vielleicht zwinged $a [mm] \equiv [/mm] 1 (p+1)$ oder $a [mm] \equiv [/mm] q(p+1)$ folgt?
Beweisen kann ichs bis jetzt allerdings nicht

        
Bezug
Äquivalenz gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:24 Mo 03.01.2011
Autor: felixf

Moin!

> Seien a,b [mm]\in \IN[/mm] und q > p [mm]\in \IP,[/mm] der Menge der
> Primzahlen.
>  Weiters gelte
> [mm]ggt(a,p)=ggt(a,q)=ggt(a,b)=ggt(q,b)=ggt(b,p)=1[/mm]
>  
> [mm](a-1)b \equiv 0 (p+1)[/mm]
>  [mm](q-1)b \equiv 0 (p+1)[/mm]
>  
> Was kann über a ausgesagt werden ?

Nach Voraussetzung kann $b [mm] \equiv [/mm] 0 [mm] \pmod{p+1}$ [/mm] sein, etwa $b = p + 1$; das ist immer teilerfremd zu $p$.

Dann waeren beide Kongruenzen fuer jedes $a$ und $q$ erfuellt, aber $a$ koennte so gut wie alles sein.

LG Felix


Bezug
                
Bezug
Äquivalenz gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Mo 03.01.2011
Autor: wauwau

Ok, das ist der triviale Fall.
Und wenn nun b nicht 0 mod (p+1) ist???

Bezug
        
Bezug
Äquivalenz gleichung: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Mi 05.01.2011
Autor: Dirichlet

Seid gegrüßt, wauwau!

Tipp ist zuviel gesagt, denn Probieren geht über Studieren: Ich würde einmal systematisch Zahlen einsetzen und gültige Belegungen suchen. Im nichttrivialen Fall ist das gar nicht so einfach. Man kann etwas absehen, wohin die Aufgabe laufen könnte.

Nun ist dies eine offene Aufgabenstellung. Da ich das Umfeld der Aufgabe nicht kenne, kann ich schwer abschätzen, wie die Aufgabe gedacht ist und worauf sie abzielt. Kannst Du den Hintergrund der Aufgabe skizzieren?

Hochachtungsvoll, P. G. L. Dirichlet

Bezug
        
Bezug
Äquivalenz gleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 11.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de