www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Äquivalenz von Aussagen zeigen
Äquivalenz von Aussagen zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Aussagen zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 12.01.2010
Autor: deniz87

Hallo zusammen,
Ich bearbeite gerade die folgende Aufgabe, aber leider komm' ich nicht mehr weiter.
Sei [mm] D\subseteqIR [/mm] offen. Zeigen Sie,dass für eine Funktion f:D---->IR folgende Aussagen äquivalent sind:
1) f ist stetig
2) f^-1 (U) ist offen für alle offenen Mengen [mm] U\subseteqIR [/mm]
Ok zu zeigen ist dann erstens, dass aus 1) ---> 2)
Beweis. Sei f stetig in allen Punkten [mm] x_0 \in [/mm] D (Könnte doch auch gleichmäßige sein oder?) Dann gilt für alle [mm] x_0 [/mm] : [mm] f(x_0) [/mm] = [mm] \limes_{x\rightarrow\x_0} [/mm] Ist es überhaupt hilfreich die Definition der Folgenstetigkeit anzuwenden oder sollt man lieber die [mm] \varepsilon [/mm] - [mm] \delta [/mm] Definition verwenden? Man weiß doch jetzt heißt D die "Definitionsmenge" der stetigen Funktion f ist. Zusätzlich ist bekannt das diese offen ist. Man muss doch zeigen, dass jeder Punkt aus D bijektiv auf das Intervall U abgebildet wird wobei zu zeigen ist dass U ebenfalls offen ist. Oder?
Könnt ihr mir weiterhelfen?
Viele Grüße
Deniz

        
Bezug
Äquivalenz von Aussagen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Mi 13.01.2010
Autor: fred97


> Hallo zusammen,
>  Ich bearbeite gerade die folgende Aufgabe, aber leider
> komm' ich nicht mehr weiter.
>  Sei [mm]D\subseteqIR[/mm] offen. Zeigen Sie,dass für eine Funktion
> f:D---->IR folgende Aussagen äquivalent sind:
>  1) f ist stetig
>  2) f^-1 (U) ist offen für alle offenen Mengen
> [mm]U\subseteqIR[/mm]
>  Ok zu zeigen ist dann erstens, dass aus 1) ---> 2)

>  Beweis. Sei f stetig in allen Punkten [mm]x_0 \in[/mm] D (Könnte
> doch auch gleichmäßige sein oder?)


Nein. Davon ist nicht die Rede



> Dann gilt für alle
> [mm]x_0[/mm] : [mm]f(x_0)[/mm] = [mm]\limes_{x\rightarrow\x_0}[/mm]

Grausam !

> Ist es überhaupt
> hilfreich die Definition der Folgenstetigkeit anzuwenden
> oder sollt man lieber die [mm]\varepsilon[/mm] - [mm]\delta[/mm] Definition
> verwenden?


Letzteres

> Man weiß doch jetzt heißt D die
> "Definitionsmenge" der stetigen Funktion f ist. Zusätzlich
> ist bekannt das diese offen ist.



> Man muss doch zeigen, dass
> jeder Punkt aus D bijektiv auf das Intervall U abgebildet
> wird

Hä, wie kommst Du auf so etwas ?


> wobei zu zeigen ist dass U ebenfalls offen ist.

Quatsch !


> Oder?
>  Könnt ihr mir weiterhelfen?


Alsooo, wir zeigen 1) ==> 2). f ist also auf D stetig. Wir nehmen uns eine offene Menge U her und müssen zeigen:

                [mm] $f^{-1}(U) [/mm] $ ist offen.

Es ist [mm] $f^{-1}(U) [/mm] = [mm] \{x \in D : f(x) \in U \}$. [/mm] Sei [mm] $x_0 \in f^{-1}(U) [/mm] $

Zu zeigen ist jetzt: es gibt ein [mm] \delta [/mm] > 0 mit:

              (*)  $(x-0- [mm] \delta, x_0+ \delta) \subseteq f^{-1}(U) [/mm] $

Es ist [mm] f(x_0) \in [/mm] U. U ist offen, folglich ex. ein [mm] \varepsilon [/mm] > 0 mit

               (**)  [mm] $(f(x_0)- \varepsilon, f(x_0)+\varepsilon) \subseteq [/mm] U$


Benutze jetzt (**) und die [mm] \varepsilon [/mm] - [mm] \delta [/mm] - Def. , um ein [mm] \delta [/mm] >0 zu finden, so dass (*) gilt.

FRED



>  Viele Grüße
> Deniz


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de